The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Postheparin plasma lipases and carnitine in infants during parenteral nutrition.

Lipoprotein lipase is the rate-limiting factor for hydrolyzing triglycerides to glycerol and fatty acids. Carnitine is a cofactor in the transport of long-chain fatty acids through the mitochondrial membrane for oxidation. To assess these determinants of fat utilization during total parenteral nutrition, lipoprotein and hepatic lipase activities and carnitine concentrations of nine newborn infants, operated on because of gastrointestinal anomalies during the first day of life, were measured with specific methods. Total parenteral nutrition was built up in 3 days whereafter the infants received 3 g/kg of fat at a constant rate of infusion for 24 h/day. Lipoprotein lipase activity of post-heparin plasma increased from 14 to 35 mumol free fatty acids/ml/h during parenteral nutrition whereas hepatic lipase activity remained unchanged at 40 mumol free fatty acids/ml/h. Serum free carnitine and acylcarnitine levels decreased significantly during parenteral nutrition; urinary excretion of carnitine decreased also. In addition, serum cholesterol and phospholipids increased markedly during parenteral nutrition whereas serum triglycerides, free fatty acids, and blood beta-hydroxybutyrate remained unchanged. Serum apolipoprotein A-I concentrations were unaltered, apolipoprotein A-II underwent a transient increase, and apolipoprotein B increased monotonically during parenteral nutrition. The results suggest that under the present circumstances neither lipoprotein lipase activity nor carnitine resources are rate-limiting for the utilization of fat in newborn infants during total parenteral nutrition.[1]

References

 
WikiGenes - Universities