The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The renal handling of terephthalic acid.

By use of the Sperber in vivo chicken preparation method (1948, Ann. R. Agric. Coll. Swed. 15, 317-349), infusion of radiolabeled terephthalic acid ([14C]TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of [14C]TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the [14C]TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of [14C]TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion. m-Phthalate, but not o-phthalate, inhibited TPA excretory transport, indicating that there is some specificity in the renal secretion of carboxy-substituted benzoic acids. TPA was actively accumulated by rat and human cadaver renal cortical slices.[1]

References

  1. The renal handling of terephthalic acid. Tremaine, L.M., Quebbemann, A.J. Toxicol. Appl. Pharmacol. (1985) [Pubmed]
 
WikiGenes - Universities