The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Iron delivery during proliferation and differentiation of kidney tubules.

Proliferation during kidney development can be stimulated with an iron chelator, ferric pyridoxal isonicotinoyl hydrazone (FePIH). Neither the starting products nor the intermediary in FePIH synthesis stimulated proliferation. Thus, the growth-promoting effects of FePIH are due to the iron ion. Some other low molecular weight, saturated iron chelators such as glycyl-histidyl-lysine acetate, nitrilotriacetic acid, ascorbate, citrate, and unchelated ferrous sulfate could not support as high a degree of proliferation as FePIH or transferrin. FePIH delivered just slightly less radioactive iron into the trichloroacetic acid-precipitable fraction than transferrin. The octanol/saline partition coefficients of radioactive iron in solution with transferrin, nitrilotriacetic acid, or chloride were all less than 0.06. Thus, these compounds cannot efficiently traverse the lipid membrane. On the other hand, Fe3+ carried by PIH had a partition coefficient of 0.96. Hence, FePIH can stimulate proliferation because it can carry iron through the lipid membrane. Transferrin is not lipophilic but it delivers iron by receptor-mediated endocytosis.[1]

References

  1. Iron delivery during proliferation and differentiation of kidney tubules. Landschulz, W., Ekblom, P. J. Biol. Chem. (1985) [Pubmed]
 
WikiGenes - Universities