The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Stimulation of free fatty acid and diacylglycerol accumulation in cerebrum and cerebellum during bicuculline-induced status epilepticus. Effect of pretreatment with alpha-methyl-p-tyrosine and p-chlorophenylalamine.

The pool size and composition of free fatty acids (FFA) and diglycerides (DG) from the cerebrum and cerebellum of rats undergoing bicuculline-induced seizures were studied. A fourfold increase in cerebral FFA occurred 3-4 min after bicuculline injection; arachidonic and stearic acids were the principal fatty acids accumulated. Cerebellar FFA also increased, but to a lesser extent. An increased production of arachidonic acid took place in the cerebrum as a function of time after bicuculline injection. Other fatty acids produced were oleic, palmitic, and docosahexaenoic acids. A twofold increase in cerebral arachidonic acid was seen at the time of the first generalized tonic-clonic convulsion. However, a 13- to 17-fold increase in arachidonic acid was seen approximately 5-6 min after bicuculline injection. The rise in other FFA was much smaller. Stearoyl- and arachidonoyl-DG were also accumulated. The drug alpha-methyl-p-tyrosine was found to (a) potentiate the bicuculline-stimulated release of cerebellar FFA, and (b) inhibit by 70% the production of stearoyl- and arachidonoyl-DG in the cerebrum and cerebellum. Basal production of FFA was stimulated by p-chlorophenylalanine, but the drug had no effect on the bicuculline-induced changes. Hydrolysis of phospholipids enriched in stearoyl-arachidonoyl groups, such as phosphatidylinositol of excitable membranes, may be stimulated during seizures.[1]

References

 
WikiGenes - Universities