The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins.

Human-salivary, porcine-pancreatic, and Bacillus subtilis alpha amylases were used to study the structure of amylose-V complexes with butyl alcohol, tert-butyl alcohol, 1,1,2,2-tetrachloroethane, and 1-naphthol, and of retrograded amylose. Alpha amylase hydrolyzes the amorphous, folding areas on the surfaces of the lamella of packed helices, with the formation of resistant, amylodextrin fragments. Their degree of polymerization (d.p.) corresponds to the diameter of the helices and the folding length of the chain. The resistant fragments were fractionated on a column of Bio-Gel A-0.5m. Gel filtration of human-salivary and porcine-pancreatic alpha amylase hydrolyzates gave resistant fragments whose peak fractions, i.e., the three pooled fractions from the gel-filtration column with the highest amount of carbohydrate, had a d.p. of 75 +/- 4 for the amylose complex with butyl alcohol, 90 +/- 3 for those with tert-butyl alcohol and tetrachloroethane, and 123 +/- 2 for that with 1-naphthol. These d.p. values correspond to helices of six residues per turn with a folding length of 10 nm, seven residues per turn with a folding length of 10 nm, and eight residues per turn with a folding length of 12 nm (or nine residues per turn with a folding length of 10 nm), respectively. Acid hydrolysis of retrograded amylose gave a resistant fragment having an average d.p. of 32, human-salivary and porcine-pancreatic alpha amylases gave a resistant fragment of d.p. 43, and Bacillus subtilis alpha amylase gave a resistant fragment of d.p. 50. A structure for retrograded amylose is proposed in which there are crystalline, double-helical regions that are 10 nm long, interspersed with amorphous regions. The amorphous regions are hydrolyzed by acid and by alpha amylases, leaving the crystalline regions intact. The differences in the sizes of the resistant amylodextrins depend on the differences in the specificities of the hydrolyzing agents: acid hydrolyzes right up to the edge of the crystalline region, whereas the alpha amylases hydrolyze up to some point several D-glucosyl residues away from the crystalline region, leaving "stubs" on the ends of the amylodextrins whose sizes are dependent on the sizes of the binding sites of the individual alpha amylases.(ABSTRACT TRUNCATED AT 400 WORDS)[1]

References

 
WikiGenes - Universities