The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

alpha-naphthol     naphthalen-1-ol

Synonyms: Naphthol-1, Fourrine 99, Fouramine ERN, Naphthyl-1-ol, Fourrine ERN, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ursol ERN


High impact information on Ursol ERN

  • Using this model, we demonstrated that choroid plexuses can act as an absolute blood-CSF barrier toward 1-naphthol, a cytotoxic, lipophilic model compound, by a coupled metabolism-efflux mechanism [6].
  • In the case of UGT1A9, however, glucuronidation of alpha-naphthol and scopoletin was resistant to such inhibition, whereas glucuronidation of entacapone and several other aglycones was sensitive [7].
  • The identity of the trapped radical could not be identified on the basis of published hyperfine coupling constants, but the observation that horseradish peroxidase-catalyzed oxidation of 1-naphthol produced an identical ESR signal suggests that the radical was either a phenoxy or phenoxy-derived radical [8].
  • In cultured cells, the 1 hour turnover of 1 microM 1-naphthol to its glucuronide and sulphate conjugates averaged 35% and 8% respectively [9].
  • Conjugation of 1-naphthol in human gastric epithelial cells [9].

Chemical compound and disease context of Ursol ERN


Biological context of Ursol ERN


Anatomical context of Ursol ERN


Associations of Ursol ERN with other chemical compounds


Gene context of Ursol ERN


Analytical, diagnostic and therapeutic context of Ursol ERN

  • 1-Naphthol was selectively toxic to human colorectal tumours compared to corresponding normal colonic tissue removed at surgery and maintained in short-term organ culture [2].
  • Cells were incubated in the presence of several concentrations of 1(14C)-naphthol, and formation of 1-naphthol glucuronide and 1-naphthol sulphate was assessed at various times by thin layer chromatography [31].
  • In monkey cells BII only enhanced DTD, and no changes were observed in the glucuronidation of 1-naphthol after treatment with either DIM or BII [25].
  • Conjugation of 1-naphthol by human bronchus and bronchoscopy samples [32].
  • The lack of effect of BSO on 1-naphthol and 1,4-NQ is not easily explained but if one also considers the modest potentiation of cytotoxicity+ achieved with the other agents studied, the potential use of BSO in combined chemotherapy is at best rather modest [33].


  1. Improved preparation of hepatic microsomes for in vitro diagnosis of inherited disorders of the glucose-6-phosphatase system. Coughtrie, M.W., Blair, J.N., Hume, R., Burchell, A. Clin. Chem. (1991) [Pubmed]
  2. Selective toxicity of 1-naphthol to human colorectal tumour tissue. Wilson, G.D., d'Arcy Doherty, M., Cohen, G.M. Br. J. Cancer (1985) [Pubmed]
  3. Isolation of a constitutively expressed enzyme for hydrolysis of carbaryl in Pseudomonas aeruginosa. Chapalmadugu, S., Chaudhry, G.R. J. Bacteriol. (1993) [Pubmed]
  4. Conjugation of 1-naphthol by human colon and tumour tissue using different experimental systems. Gibby, E.M., Cohen, G.M. Br. J. Cancer (1984) [Pubmed]
  5. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Rui, L., Kwon, Y.M., Fishman, A., Reardon, K.F., Wood, T.K. Appl. Environ. Microbiol. (2004) [Pubmed]
  6. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. Strazielle, N., Ghersi-Egea, J.F. J. Neurosci. (1999) [Pubmed]
  7. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme. Kurkela, M., García-Horsman, J.A., Luukkanen, L., Mörsky, S., Taskinen, J., Baumann, M., Kostiainen, R., Hirvonen, J., Finel, M. J. Biol. Chem. (2003) [Pubmed]
  8. Metabolism of diethylstilbestrol by horseradish peroxidase and prostaglandin-H synthase. Generation of a free radical intermediate and its interaction with glutathione. Ross, D., Mehlhorn, R.J., Moldeus, P., Smith, M.T. J. Biol. Chem. (1985) [Pubmed]
  9. Conjugation of 1-naphthol in human gastric epithelial cells. Déchelotte, P., Varrentrapp, M., Meyer, H.J., Schwenk, M. Gut (1993) [Pubmed]
  10. Mechanisms of toxic injury to isolated hepatocytes by 1-naphthol. Doherty, M.D., Cohen, G.M., Smith, M.T. Biochem. Pharmacol. (1984) [Pubmed]
  11. Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading pseudomonas strain c4. Swetha, V.P., Basu, A., Phale, P.S. J. Bacteriol. (2007) [Pubmed]
  12. Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus. Cerniglia, C.E., Freeman, J.P., Evans, F.E. Arch. Microbiol. (1984) [Pubmed]
  13. The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. Larkin, M.J., Day, M.J. J. Appl. Bacteriol. (1986) [Pubmed]
  14. Reaction products of 1-naphthol with reactive oxygen species prevent NADPH oxidase activation in activated human neutrophils, but leave phagocytosis intact. Hart, B.A., Simons, J.M., Rijkers, G.T., Hoogvliet, J.C., Van Dijk, H., Labadie, R.P. Free Radic. Biol. Med. (1990) [Pubmed]
  15. Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells. Chichester, C.H., Buckpitt, A.R., Chang, A., Plopper, C.G. Mol. Pharmacol. (1994) [Pubmed]
  16. Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. Toki, B.E., Cerveny, C.G., Wahl, A.F., Senter, P.D. J. Org. Chem. (2002) [Pubmed]
  17. Quantitative studies of sulphate conjugation by isolated rat liver cells using [35S]sulphate. Dawson, J., Knowles, R.G., Pogson, C.I. Biochem. Pharmacol. (1991) [Pubmed]
  18. Activatable esterase activity of murine natural killer cell--YAC tumour cell conjugates. Petty, H.R., Hermann, W., Dereski, W., Frey, T., McConnell, H.M. J. Cell. Sci. (1984) [Pubmed]
  19. Human and rat liver UDP-glucuronosyltransferases are targets of ketoprofen acylglucuronide. Terrier, N., Benoit, E., Senay, C., Lapicque, F., Radominska-Pandya, A., Magdalou, J., Fournel-Gigleux, S. Mol. Pharmacol. (1999) [Pubmed]
  20. Stable expression of two human UDP-glucuronosyltransferase cDNAs in V79 cell cultures. Fournel-Gigleux, S., Sutherland, L., Sabolovic, N., Burchell, B., Siest, G. Mol. Pharmacol. (1991) [Pubmed]
  21. Glucuronic acid conjugation by hepatic microsomal fractions isolated from streptozotocin-induced diabetic rats. Morrison, M.H., Hawksworth, G.M. Biochem. Pharmacol. (1984) [Pubmed]
  22. Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Heitkamp, M.A., Freeman, J.P., Cerniglia, C.E. Appl. Environ. Microbiol. (1987) [Pubmed]
  23. Differential induction of cytochrome P-450-dependent monooxygenase, epoxide hydrolase, glutathione transferase and UDP glucuronosyl transferase activities in the liver of the rainbow trout by beta-naphthoflavone or Clophen A50. Andersson, T., Pesonen, M., Johansson, C. Biochem. Pharmacol. (1985) [Pubmed]
  24. Drug-metabolizing enzymes in pharyngeal mucosa and in oropharyngeal cancer tissue. Ullrich, D., Münzel, P.A., Beck-Gschaidmeier, S., Schröder, M., Bock, K.W. Biochem. Pharmacol. (1997) [Pubmed]
  25. Acid reaction products of indole-3-carbinol and their effects on cytochrome P450 and phase II enzymes in rat and monkey hepatocytes. Wortelboer, H.M., de Kruif, C.A., van Iersel, A.A., Falke, H.E., Noordhoek, J., Blaauboer, B.J. Biochem. Pharmacol. (1992) [Pubmed]
  26. In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes. Cho, T.M., Rose, R.L., Hodgson, E. Drug Metab. Dispos. (2006) [Pubmed]
  27. Isolation and characterization of a UDP-glucuronosyltransferase (UGT1A01) cloned from female rhesus monkey. Dean, B., Chang, S., Stevens, J., Thomas, P.E., King, C. Arch. Biochem. Biophys. (2002) [Pubmed]
  28. Activities of drug metabolizing enzymes in bovine colon epithelial cell cultures. Birkner, S., Weber, S., Dohle, A., Schmahl, G., Bolt, H.M., Föllmann, W. Arch. Toxicol. (2003) [Pubmed]
  29. Coexistence of acute monoblastic leukemia and adult T-cell leukemia: possible association with HTLV-I infection in both cases? Tokioka, T., Shimamoto, Y., Funai, N., Nagumo, F., Motoyoshi, K., Tadano, J., Yamaguchi, M. Leuk. Lymphoma (1992) [Pubmed]
  30. The effects of coffee on conjugation reactions in human colon carcinoma cells. Okamura, S., Suzuki, K., Yanase, M., Koizumi, M., Tamura, H.O. Biol. Pharm. Bull. (2005) [Pubmed]
  31. 1-Naphthol conjugation in isolated cells from liver, jejunum, ileum, colon and kidney of the guinea pig. Schwenk, M., Locher, M. Biochem. Pharmacol. (1985) [Pubmed]
  32. Conjugation of 1-naphthol by human bronchus and bronchoscopy samples. Gibby, E.M., Cohen, G.M. Biochem. Pharmacol. (1984) [Pubmed]
  33. Effects of glutathione depletion on the cytotoxicity of agents toward a human colonic tumour cell line. Jordan, J., d'Arcy Doherty, M., Cohen, G.M. Br. J. Cancer (1987) [Pubmed]
WikiGenes - Universities