Glucagon treatment stimulates the metabolism of hepatic submitochondrial particles.
Hepatic submitochondrial particles, prepared at neutral pH from rats pretreated with glucagon, exhibited stimulated rates of State 3 and uncoupled respiration when succinate or NADH were the substrates, but not when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine were employed. Measurements of 8-anilino-1-naphthalenesulfonic acid fluorescence in the particles indicated that glucagon treatment resulted in a stimulation of energization supported by succinate respiration or ATP hydrolysis. Similarly, the energy-linked pyridine nucleotide transhydrogenase and reverse electron flow reactions driven by succinate oxidation or ATP were also stimulated. The results indicate that mitochondrial substrate transport is not the prime locus of glucagon action. It is suggested that the increased level of energization in particles prepared from glucagon-treated rats is a reflection of a stimulation of the respiratory chain, possibly between cytochromes b and c, and the ATP-forming reactions.[1]References
- Glucagon treatment stimulates the metabolism of hepatic submitochondrial particles. Titheradge, M.A., Binder, S.B., Yamazaki, R.K., Haynes, R.C. J. Biol. Chem. (1978) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg