The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Elaboration of type b capsule by Haemophilus influenzae as a determinant of pathogenicity and impaired killing by trimethoprim-sulfamethoxazole.

In vitro, Haemophilus influenzae strains have two distinct patterns of susceptibility to trimethoprim-sulfamethoxazole (TMP/SMZ); strains with low minimum inhibitory concentration and high minimum bactericidal concentration (tolerant) and those with both low minimum inhibitory concentration and minimum bactericidal concentration (kill-sensitive). Tolerant H. influenzae strains were found to elaborate significantly more type b capsular polysaccharide, a linear polymer of ribosyl ribose phosphate (PRP), than kill-sensitive strains. Tolerant strains became susceptible to killing by TMP/SMZ when type b capsule was physically removed, but reacquired tolerance following growth and reversion to original (mucoid) phenotype. Susceptibility of wild (type a, b, c), isogenic (type b and untypable), and transformed (type b and d) strains indicated that elaboration of type b capsule was associated with TMP/SMZ tolerance. In a second series of studies, virulence of H. influenzae in the infant rat model was correlated with in vitro tolerance. Tolerant strains (13/13) caused systemic disease while none (0/7) of kill-sensitive strains were pathogenic. The efficacy of TMP/SMZ in the treatment of invasive infection was evaluated in rats with established bacteremia and meningitis. TMP/SMZ failed to eradicate H. influenzae b from the blood in 85% (17/20) or from the cerebrospinal fluid in 95% (19/20) of infected animals. Thus, in vitro tolerance correlated with therapeutic failure in vivo.[1]


WikiGenes - Universities