Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes.
The composition and metabolism of rat sciatic nerve phospholipids were studied 20 weeks after induction of chronic diabetes by intraperitoneal injection of streptozotocin (50 mg/kg). On a wet weight basis the nerves from the diabetic animals showed a 7% decrease in total phospholipid from that of controls and a relative decrease in phosphatidylinositol. Incubations of isolated sciatic nerves of diabetic rats in a medium containing [33P]orthophosphate gave decreased labeling of phosphatidylinositol and substantial changes in the labeling pattern of phosphatidylinositol phosphate and 4,5-bisphosphate from that of controls. The ratio of label in these polyphosphoinositides decreased from 2.5 for normal nerve to about 1.0 for diabetic nerve within a 2-h incubation period. These metabolic alterations were not observed in acutely diabetic animals 5 days after streptozotocin (100 mg/kg) administration. Because polyphosphoinositides may be involved in the control of membrane permeability during axonal conduction, alterations in their relative amounts or turnover rates could be related to the physiological changes of early diabetic neuropathy.[1]References
- Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes. Natarajan, V., Dyck, P.J., Schmid, H.H. J. Neurochem. (1981) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg