Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse.
p57KIP2 is a potent tight- binding inhibitor of several G1 cyclin/Cdk complexes, and is a negative regulator of cell proliferation. The gene encoding human p57KIP is located on chromosome 11p15.5 (ref. 2), a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome, a familial cancer syndrome, marking it a tumour suppressor candidate. Several types of childhood tumours including Wilm's tumour, adrenocortical carcinoma and rhabdomyosarcoma display a specific loss of maternal 11p15 alleles, suggesting that genomic imprinting plays an important part. Genetic analysis of the Beckwith-Wiedemann syndrome has indicated maternal carriers as well as suggested a role in genomic imprinting. Here, as a first step towards elucidating the genesis of human cancers in this region, we showed that a mouse homologue of p57KIP2 is genomically imprinted. The paternally inherited allele is transcriptionally repressed and methylated. This murine gene maps to the distal region of chromosome 7, within a cluster of imprinted genes, including insulin-2, insulin-like growth factor-2, H19 and Mash2 (refs 14-18).[1]References
- Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Hatada, I., Mukai, T. Nat. Genet. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg