The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Genomic Imprinting

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Genomic Imprinting


High impact information on Genomic Imprinting


Chemical compound and disease context of Genomic Imprinting

  • This defect was not reversible after treatment (normalization of blood glucose) and is therefore a candidate for the primary defect which is likely to be of genetic origin, but also could be caused by genetic imprinting, intrauterine malnutrition and social inheritance (obesity) [11].

Biological context of Genomic Imprinting


Anatomical context of Genomic Imprinting


Associations of Genomic Imprinting with chemical compounds


Gene context of Genomic Imprinting


  1. Maintenance of genomic imprinting at the IGF2 locus in hepatoblastoma. Davies, S.M. Cancer Res. (1993) [Pubmed]
  2. Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. Kuwako, K., Taniura, H., Yoshikawa, K. J. Biol. Chem. (2004) [Pubmed]
  3. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Casola, S., Pedone, P.V., Cavazzana, A.O., Basso, G., Luksch, R., d'Amore, E.S., Carli, M., Bruni, C.B., Riccio, A. Oncogene (1997) [Pubmed]
  4. Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease. Takeda, S., Kondo, M., Kumada, T., Koshikawa, T., Ueda, R., Nishio, M., Osada, H., Suzuki, H., Nagatake, M., Washimi, O., Takagi, K., Takahashi, T., Nakao, A., Takahashi, T. Oncogene (1996) [Pubmed]
  5. Loss of imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Chen, C.L., Ip, S.M., Cheng, D., Wong, L.C., Ngan, H.Y. Clin. Cancer Res. (2000) [Pubmed]
  6. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Howell, C.Y., Bestor, T.H., Ding, F., Latham, K.E., Mertineit, C., Trasler, J.M., Chaillet, J.R. Cell (2001) [Pubmed]
  7. The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Bressler, J., Tsai, T.F., Wu, M.Y., Tsai, S.F., Ramirez, M.A., Armstrong, D., Beaudet, A.L. Nat. Genet. (2001) [Pubmed]
  8. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Hatada, I., Mukai, T. Nat. Genet. (1995) [Pubmed]
  9. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Kay, G.F., Barton, S.C., Surani, M.A., Rastan, S. Cell (1994) [Pubmed]
  10. Parental imprinting of the Mas protooncogene in mouse. Villar, A.J., Pedersen, R.A. Nat. Genet. (1994) [Pubmed]
  11. Mechanisms of insulin resistance in non-oxidative glucose metabolism: the role of glycogen synthase. Beck-Nielsen, H. Journal of basic and clinical physiology and pharmacology. (1998) [Pubmed]
  12. Role for DNA methylation in genomic imprinting. Li, E., Beard, C., Jaenisch, R. Nature (1993) [Pubmed]
  13. Acetylation and chromosomal functions. Cheung, W.L., Briggs, S.D., Allis, C.D. Curr. Opin. Cell Biol. (2000) [Pubmed]
  14. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Sasaki, H., Jones, P.A., Chaillet, J.R., Ferguson-Smith, A.C., Barton, S.C., Reik, W., Surani, M.A. Genes Dev. (1992) [Pubmed]
  15. Mendel stayed home. Genomic imprinting and environmental disease susceptibility, National Institute of Environmental Health Sciences and Duke University Medical Center, Durham, NC, USA, 8-10 October 1998. Feinberg, A.P. Trends Genet. (1999) [Pubmed]
  16. Inverse relationship between age at onset of Huntington disease and paternal age suggests involvement of genetic imprinting. Farrer, L.A., Cupples, L.A., Kiely, D.K., Conneally, P.M., Myers, R.H. Am. J. Hum. Genet. (1992) [Pubmed]
  17. Genomic deletion of an imprint maintenance element abolishes imprinting of both insulin-like growth factor II and H19. Hu, J.F., Vu, T.H., Hoffman, A.R. J. Biol. Chem. (1997) [Pubmed]
  18. Expression and imprinting of the insulin-like growth factor II gene in neonatal mouse cerebellum. Hetts, S.W., Rosen, K.M., Dikkes, P., Villa-Komaroff, L., Mozell, R.L. J. Neurosci. Res. (1997) [Pubmed]
  19. Conservation of Dnmt1o cytosine methyltransferase in the marsupial Monodelphis domestica. Ding, F., Patel, C., Ratnam, S., McCarrey, J.R., Chaillet, J.R. Genesis (2003) [Pubmed]
  20. The novel gene, gamma2-COP (COPG2), in the 7q32 imprinted domain escapes genomic imprinting. Yamasaki, K., Hayashida, S., Miura, K., Masuzaki, H., Ishimaru, T., Niikawa, N., Kishino, T. Genomics (2000) [Pubmed]
  21. Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Dindot, S.V., Farin, P.W., Farin, C.E., Romano, J., Walker, S., Long, C., Piedrahita, J.A. Biol. Reprod. (2004) [Pubmed]
  22. Genomic imprinting. Silence across the border. Reik, W., Murrell, A. Nature (2000) [Pubmed]
  23. Genomic imprinting. Action at a distance. Eden, S., Cedar, H. Nature (1995) [Pubmed]
  24. The DNA methyltransferases of mammals. Bestor, T.H. Hum. Mol. Genet. (2000) [Pubmed]
  25. Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Tsai, C.E., Lin, S.P., Ito, M., Takagi, N., Takada, S., Ferguson-Smith, A.C. Curr. Biol. (2002) [Pubmed]
  26. Modulation of Igf2 genomic imprinting in mice induced by 5-azacytidine, an inhibitor of DNA methylation. Hu, J.F., Nguyen, P.H., Pham, N.V., Vu, T.H., Hoffman, A.R. Mol. Endocrinol. (1997) [Pubmed]
  27. Genetic analysis of genomic imprinting: an Imprintor-1 gene controls inactivation of the paternal copy of the mouse Tme locus. Forejt, J., Gregorová, S. Cell (1992) [Pubmed]
  28. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Chedin, F., Lieber, M.R., Hsieh, C.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  29. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Charalambous, M., Smith, F.M., Bennett, W.R., Crew, T.E., Mackenzie, F., Ward, A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Hereditary persistence of alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus insertion in the Zhx2 gene. Perincheri, S., Dingle, R.W., Peterson, M.L., Spear, B.T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
WikiGenes - Universities