The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of bile acid synthesis by deoxycholic acid in the rat: different effects on cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase.

We examined the effects of feeding deoxycholic acid (1% and 0.4% of diet), alone and in combination with ursodeoxycholic acid, on serum and biliary bile acid concentrations, hepatic morphology, and the activities and steady-state messenger RNA (mRNA) levels of HMG-CoA reductase and cholesterol 7 alpha-hydroxylase in the rat. Feeding 1% deoxycholic acid increased serum bile acid concentrations (cholestasis), produced portal triad inflammation, bile duct proliferation, and severe hepatocyte necrosis with nuclear pleomorphism. Hepatic damage was prevented when ursodeoxycholic acid (1%) was combined with the deoxycholic acid (1%), or when deoxycholic acid intake was reduced to 0.4%. HMG-CoA reductase and cholesterol 7 alpha-hydroxylase activities were markedly inhibited (-56% and -55%, respectively) with either 1% or 0.4% deoxycholic acid. Ursodeoxycholic acid alone produced an insignificant decline in HMG-CoA reductase and cholesterol 7 alpha-hydroxylase activities, and when combined with 1% deoxycholic acid did not lessen the inhibitory effect of the latter. Steady-state mRNA levels increased 20-fold for HMG-CoA reductase and 53-fold for cholesterol 7 alpha-hydroxylase in rats fed 1% deoxycholic acid. In contrast, 0.4% deoxycholic acid decreased HMG-CoA reductase mRNA levels 76%, and cholesterol 7 alpha-hydroxylase mRNA levels 82%. Ursodeoxycholic acid alone did not affect HMG-CoA reductase or cholesterol 7 alpha-hydroxylase steady-state mRNA levels. Steady-state mRNA levels and activities of sterol 27-hydroxylase, a key enzyme in the alternative acidic pathway of bile acid synthesis, did not change with either high or low doses of deoxycholic acid.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Regulation of bile acid synthesis by deoxycholic acid in the rat: different effects on cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase. Shefer, S., Kren, B.T., Salen, G., Steer, C.J., Nguyen, L.B., Chen, T., Tint, G.S., Batta, A.K. Hepatology (1995) [Pubmed]
 
WikiGenes - Universities