Delayed-type hypersensitivity-induced increase in vascular permeability in the mouse small intestine: inhibition by depletion of sensory neuropeptides and NK1 receptor blockade.
1. This study investigates the effects of capsaicin-induced depletion of sensory neuropeptides and of neurokinin1 (NK1) receptor blockade on delayed-type hypersensitivity (DTH)-induced changes of vascular permeability in the small intestine of the mouse. 2. The DTH reaction in the small intestine was elicited by dinitrofluorobenzene (DNFB)-contact sensitization followed by oral dinitrobenzene sulphonic acid (DNBS) challenge. To assess vascular leakage the accumulation of the plasma marker, Evans blue (EB), was measured 2, 24 and 48 h after the challenge. 3. The small intestinal DTH reaction was characterized by a significant increase in vascular permeability 24 h after the challenge of previously sensitized mice when compared to vehicle-sensitized mice (P < 0.05, ANOVA). Capsaicin-induced depletion of sensory neuropeptides, two weeks before the sensitization, completely inhibited the DTH-induced increase in small intestinal vascular permeability at 24 h (P < 0.05, ANOVA). Vehicle/control: 108.2 +/- 8.6 ng EB mg-1 dry weight; vehicle/DTH 207.8 +/- 25.1 ng EB mg-1 dry weight; capsaicin/control: 65.8 +/- 11.9 ng EB mg-1 dry weight; capsaicin/DTH: 84.3 +/- 7.6 ng EB mg-1 dry weight. 4. The tachykinins, substance P and neurokinin A (1.5 to 50 x 10(-11) mol per mouse, i.v.), induced an increase in vascular leakage in the small intestine of naive mice. The specific NK1 receptor antagonist, RP67580 (10(-9) mol per mouse, i.v.) was the most effective in reducing the substance P- induced plasma extravasation when compared with other NK receptor antagonists, FK224 and FK888.(ABSTRACT TRUNCATED AT 250 WORDS)[1]References
- Delayed-type hypersensitivity-induced increase in vascular permeability in the mouse small intestine: inhibition by depletion of sensory neuropeptides and NK1 receptor blockade. Kraneveld, A.D., Buckley, T.L., van Heuven-Nolsen, D., van Schaik, Y., Koster, A.S., Nijkamp, F.P. Br. J. Pharmacol. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg