The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Steroidal affinity labels of the estrogen receptor. 2. 17 alpha-[(Haloacetamido)alkyl]estradiols.

In a previous study, we described affinity labeling of the lamb uterine estrogen receptor by 17 alpha-[(bromoacetoxy)alkyl/alkynyl]estradiols. However, the intrinsic receptor-alkylating activities of these compounds were probably very hampered by their poor hydrolytic stability in estrogen receptor-containing tissue extracts. Therefore, (i) to develop affinity labels of the receptor not susceptible to hydrolysis and (ii) to specify the structural requirements for 17 alpha-electrophilic estradiol derivatives to be potent affinity labels of the receptor, we prepared four 17 alpha-[(haloacetamido)alkyl]estradiols. Three were bromoacetamides differing at the alkyl substituent (methyl, ethyl, or propyl), and the last was an [(iodoacetamido)propyl]estradiol prepared under both nonradioactive and 3H-labeled forms. Although their affinities for the estrogen receptor were very low (from 0.008% to 0.02% that of estradiol), they appeared to be efficient affinity labels of the receptor due to their irreversible inhibition of [3H]estradiol specific binding in lamb uterine cytosol. The effect of the compounds was time-, pH-, and concentration-dependent, with > 50% and > 80% estrogen-binding sites inactivated at 0 degrees C and pH 8.5, for the less active and more active compounds, respectively; the corresponding IC50 values varied from approximately 20 nM to approximately 10 microM. The order of efficiency was [(bromoacetamido)methyl]estradiol < [(bromoacetamido)ethyl]estradiol << [(bromoacetamido)propyl]estradiol < [(iodoacetamido)propyl]estradiol. Affinity labeling was directly demonstrated by ethanol-resistant binding of [3H][(iodoacetamido)propyl]estradiol to the receptor. The irreversible inactivation of the hormone-binding site by the four haloacetamides was prevented by treatment of the cytosol with the thiol-specific reagent methyl methanethiosulfonate, suggesting that the target of these compounds was probably the -SH of cysteines. Negative results obtained with other 17 alpha-electrophilic estradiol derivatives suggested that affinity labeling of the receptor by such derivatives required a minimal distance, including at least four C-C or C-N bonds, between the steroid and the electrophilic carbon. We therefore concluded that target cysteines in the hormone-binding site were not in direct contact with the steroid but probably in the immediate neighborhood of the D ring of the bound steroid.[1]


  1. Steroidal affinity labels of the estrogen receptor. 2. 17 alpha-[(Haloacetamido)alkyl]estradiols. el Garrouj, D., Aliau, S., Aumelas, A., Borgna, J.L. J. Med. Chem. (1995) [Pubmed]
WikiGenes - Universities