Induction of astrocyte glutamine synthetase activity by the Lathyrus toxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (beta-L-ODAP).
beta-N-Oxalyl-L-alpha,beta-diaminopropionic acid (beta-L-ODAP) is thought to be the causative agent in lathyrism due to its neuroexcitatory and neurotoxic properties. We have recently reported that beta-L-ODAP is also gliotoxic at high concentrations (Bridges et al.: Brain Res 561:262, 1991). Evidence is now presented that low, subgliotoxic concentrations of beta-L-ODAP may alter the ability of astrocytes to regulate glutamate concentrations in the CNS by increasing astrocyte glutamine synthetase activity. When astrocytes cultured from rat cortex were exposed to 100 microM beta-L-ODAP for 24 h, the resulting glutamine synthetase activity was 155% of control levels. This effect was enantiomer- and isomer-specific, dose-dependent, and required protein translation as the induction was blocked with cycloheximide. The effect of beta-L-ODAP on glutamine synthetase was not mimicked by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) or kainate, suggesting that the induction was not transduced solely through activation of cell surface non-N-methyl-D-aspartate (NMDA) glutamate receptors. An intracellular site of action of beta-L-ODAP is proposed because its effect on glutamine synthetase activity could be blocked by the amino acid uptake blocker dihydrokainate.[1]References
- Induction of astrocyte glutamine synthetase activity by the Lathyrus toxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (beta-L-ODAP). Miller, S., Nunn, P.B., Bridges, R.J. Glia (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg