Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER.
Connexin43 (Cx43) is an integral plasma membrane protein that forms gap junctions between vertebrate cells. We have used sucrose gradient fractionation and chemical cross-linking to study the first step in gap junction assembly, oligomerization of Cx43 monomers into connexon channels. In contrast with other plasma membrane proteins, multisubunit assembly of Cx43 was specifically and completely blocked when endoplasmic reticulum (ER)-to-Golgi transport was inhibited by 15 degrees C incubation, carbonyl cyanide m-chloro-phenylhydrazone, or brefeldin A or in CHO cell mutants with temperature-sensitive defects in secretion. Additional experiments indicated that connexon assembly occurred intracellularly, most likely in the trans-Golgi network. These results describe a post-ER assembly pathway for integral membrane proteins and have implications for the relationship between membrane protein oligomerization and intracellular transport.[1]References
- Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Musil, L.S., Goodenough, D.A. Cell (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg