The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A microtubule-associated protein (MAP2) kinase restores microtubule motility in embryonic brain.

Motility driven by the microtubule motors, kinesin and cytoplasmic dynein, is inhibited by MAP2 (López, L. A., and Sheetz, M. P. (1993) Cell Motil. Cytoskeleton 24, 1-16). The MAP2 inhibition is reversed by a kinase that is co-purified with chicken embryonic MAP2, completely releasing MAP2 from the microtubules. We have identified this activity with a kinase, embryonic MAP2 kinase (M(r) = 100,000), which phosphorylates MAP2 at serine amino acid residues. This kinase is c-AMP independent and inhibited by potassium fluoride and glycerol 2-phosphate. Only the phosphorylation produced by embryonic MAP2 kinase can change the affinity of MAP2 by microtubules. Bovine MAP2 kinase, Cdc2 kinase, mitogenic activated protein kinase, and the NIMA kinase are able to phosphorylate MAP2 but do not change the affinity for microtubules. In vivo, embryonic MAP2 kinase could play a major role in the regulation of motility and positioning of membranous organelles within the cells even at substoichiometric levels.[1]


WikiGenes - Universities