Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium.
The syntrophically glycolate-fermenting bacterium in the methanogenic binary coculture FlGlyM was isolated in pure culture (strain FlGlyR) with glyoxylate as sole substrate. This strain disproportionated 12 glyoxylate to 7 glycolate, 10 CO2, and 3 hydrogen. Glyoxylate was oxidized via the malyl-CoA pathway. All enzymes of this pathway, i.e. malyl-CoA lyase/malate: CoA ligase, malic enzyme, and pyruvate synthase, were demonstrated in cell-free extracts. Glycolate dehydrogenase, hydrogenase, and ATPase, as well as menaquinones as potential electron carriers, were present in the membranes. Everted membrane vesicles catalyzed hydrogen-dependent glyoxylate reduction to glycolate [86-207 nmol min-1 (mg protein)-1] coupled to ATP synthesis from ADP and Pi [38-82 nmol min-1 (mg protein)-1)]. ATP synthesis was abolished entirely by protonophores or ATPase inhibitors (up to 98 and 94% inhibition, respectively) indicating the involvement of proton-motive force in an electron transport phosphorylation driven by a new glyoxylate respiration with hydrogen as electron donor. Measured reaction rates in vesicle preparations revealed a stoichiometry of ATP formation of 0.2-0.5 ATP per glyoxylate reduced.[1]References
- Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Friedrich, M., Schink, B. Arch. Microbiol. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg