The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Surgically induced uremia in rats. II: Osseous PTH-susceptible signaling systems as predictors of bone resorption.

Predicting the course of parathormone (PTH)-elicited bone turnover in both humans and experimental rat models with moderate chronic uremia, using only standard clinical chemistry analyses, is often difficult. Consequently, rat bone from 1 + 2/3 nephrectomized animals, after 230 days of progressive renal failure, was examined for PTH-stimulated adenylate cyclase (AC) and phospholipase C (PL-C) activities. Correlations to biological parameters related to the function of bone and kidney were made. Reduced renal function was demonstrated by increased serum creatinine; circulating 1,25 dihydroxyvitamin D3 below detection level; diminished renal PTH-elicited AC activity; and decreased urinary cAMP excretion. PTH-activated renal PL-C was also reduced. However, no significant differences were seen in urine creatinine, calcium, phosphate, and hydroxyproline, nor in serum PTH, alkaline phosphatase, calcium, and phosphate. Notwithstanding, renal osteodystrophy developed as estimated by increased plasticity of the long bones, as well as reduction of the diaphyseal (Dd) and inner femoral mid-shaft (Di) diameters. Femoral cancellous bone exhibited a substantial elevation of both eroded surface (ES) and osteoid surface (OS) as well as a marked reduction in trabecular bone volume (TBV). Calvarial PTH-activated AC was enhanced, whereas corresponding PL-C was markedly reduced. PTH-enhanced AC correlated positively with ES and negatively with Di, respectively. PTH-enhanced PL-C, however, correlated positively with bone calcium content and negatively with ES. Our results indicate that bone modeling and remodeling are to a large extent related to PTH-elicited signaling systems, and cannot easily be predicted by standard clinical chemistry analyses.[1]


  1. Surgically induced uremia in rats. II: Osseous PTH-susceptible signaling systems as predictors of bone resorption. Jablonski, G., Danielsen, C.C., Mosekilde, L., Gordeladze, J.O. Calcif. Tissue Int. (1994) [Pubmed]
WikiGenes - Universities