Phenolic antioxidant-induced overexpression of class-3 aldehyde dehydrogenase and oxazaphosphorine-specific resistance.
High-level cytosolic class-3 aldehyde dehydrogenase (ALDH-3)-mediated oxazaphosphorine-specific resistance (> 35-fold as judged by the concentrations of mafosfamide required to effect a 90% cell-kill) was induced in cultured human breast adenocarcinoma MCF-7/0 cells by growing them in the presence of 30 microM catechol for 5 days. Resistance was transient in that cellular sensitivity to mafosfamide was fully restored after only a few days when the inducing agent was removed from the culture medium. The operative enzyme was identified as a type-1 ALDH-3. Cellular levels of glutathione S-transferase and DT-diaphorase activities, but not of cytochrome P450 IA1 activity, were also elevated. Other phenolic antioxidants, e.g. hydroquinone and 2,6-di-tert-butyl-4-hydroxytoluene, also induced ALDH-3 activity when MCF-7/0 cells were cultured in their presence. Thus, the increased expression of a type-1 ALDH-3 and the other enzymes induced by these agents was most probably the result of transcriptional activation of the relevant genes via antioxidant responsive elements present in their 5'-flanking regions. Cellular levels of ALDH-3 activity were also increased when a number of other human tumor cell lines, e.g. breast adenocarcinoma MDA-MB-231, breast carcinoma T-47D and colon carcinoma HCT 116b, were cultured in the presence of catechol. These findings should be viewed as greatly expanding the number of recognized environmental and dietary agents that can potentially negatively influence the sensitivity of tumor cells to cyclophosphamide and other oxazaphosphorines.[1]References
- Phenolic antioxidant-induced overexpression of class-3 aldehyde dehydrogenase and oxazaphosphorine-specific resistance. Sreerama, L., Rekha, G.K., Sladek, N.E. Biochem. Pharmacol. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg