The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids.

Fatty acids induce an increase in the transcription of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene, which encodes an enzyme that has been proposed as a control site of ketogenesis. We studied whether the peroxisome proliferator-activated receptor (PPAR) is involved in the mechanism of this transcriptional induction. We found that cotransfection of a rat mitochondrial HMG-CoA synthase promoter-chloramphenicol acetyltransferase reporter plasmid and a PPAR expression plasmid in the presence of the peroxisome proliferator clofibrate led to a more than 30-fold increase in chloramphenicol acetyltransferase activity, relative to the activity in the absence of both PPAR and inducer. Linoleic acid, a polyunsaturated fatty acid, increased this activity as potently as does clofibrate and more effectively than does monounsaturated oleic acid. We have identified, by deletional analysis, an element located 104 base pairs upstream of the mitochondrial HMG-CoA synthase gene, which confers PPAR responsiveness to homologous and heterologous promoters. This is the first example of a peroxisome proliferator-responsive element (PPRE) in a gene encoding a mitochondrial protein. This element contains an imperfect direct repeat that is similar to those described in the PPREs of other genes. Furthermore, gel retardation and cotransfection assays revealed that, as for other genes, PPAR heterodimerizes with retinoid X receptor and that both receptors cooperate for binding to the mitochondrial HMG-CoA synthase PPRE and subsequent activation of the gene. In conclusion, our data demonstrate that regulation of mitochondrial HMG-CoA synthase gene expression by fatty acids is mediated by PPAR, supporting the hypothesis that PPAR has an important role at the transcriptional level in the regulation of lipid metabolism.[1]

References

 
WikiGenes - Universities