The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of -SH groups in methylmercuric chloride-induced D-aspartate and rubidium release from rat primary astrocyte cultures.

Methylmercuric chloride (MeHgCl) was shown to increase D-aspartate and rubidium (Rb; a marker for potassium) release from preloaded astrocytes in a dose- and time-dependent fashion. Two sulfhydryl (-SH) protecting agents: a cell membrane non-penetrating compound, reduced glutathione (GSH), and the membrane permeable dithiothreitol (DTT), were found to inhibit the stimulatory action of MeHgCl on the efflux of radiolabeled D-aspartate as well as Rb. MeHgCl-induced D-aspartate and Rb release was completely inhibited by the addition of 1 mM DTT or GSH during the actual 5 min perfusion period with MeHgCl (10 microM). However, when added after MeHgCl treatment, this inhibition could not be fully sustained by GSH, while DTT fully inhibited the MeHgCl-induced release of D-aspartate. Neither DTT or GSH alone had any effect on the rate of astrocytic D-aspartate release. Accordingly, it is postulated that the stimulatory effect exerted by MeHgCl on astrocytic D-aspartate release is associated with vulnerable -SH groups located within, but not on the surface of the cell membrane. Omission of Na+ from the perfusion solution did not accelerate MeHgCl-induced D-aspartate release, suggesting that reversal of the D-aspartate carrier cannot be invoked to explain MeHgCl-induced D-aspartate release. Omission of Ca2+ from the perfusion solution increased the time-dependent MeHgCl-induced D-aspartate release.[1]

References

  1. The role of -SH groups in methylmercuric chloride-induced D-aspartate and rubidium release from rat primary astrocyte cultures. Mullaney, K.J., Fehm, M.N., Vitarella, D., Wagoner, D.E., Aschner, M. Brain Res. (1994) [Pubmed]
 
WikiGenes - Universities