The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A 5-hydroxytryptamine2 agonist augments gamma-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons.

We examined the effects of the 5-hydroxytryptamine2 receptor agonist, (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, on spontaneous and evoked discharge of locus coeruleus neurons in the rat. Extracellular recordings were obtained from single locus coeruleus neurons while (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane was injected systemically or locally into the locus coeruleus. Systemic, but not local, administration of (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane decreased spontaneous discharge of locus coeruleus neurons in a dose-dependent manner while simultaneously increasing responses evoked by somatosensory stimulation, consistent with previous studies using 5-hydroxytryptamine2 agonists. Increased responsiveness was observed after both low- and high-intensity stimulation and, in the latter, resulted from the addition of a second, longer latency response after (+-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration, when cells typically responded to each stimulation with two driven spikes instead of one. Both of these effects could be completely reversed by systemic administration of the 5-hydroxytryptamine2 receptor antagonist, ketanserin. Furthermore, we report that: (i) the (+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane-induced decrease in spontaneous firing was blocked by local infusion of the GABA antagonists bicuculline or picrotoxin into the locus coeruleus, but not by local infusion of the alpha-2 adrenoceptor antagonist, idazoxan; and (ii) the enhancement of locus coeruleus sensory responses after high-intensity stimulation was blocked by local application of the selective antagonist of N-methyl-D-aspartate receptors, 2-amino-5-phosphonopentanoic acid, but not by local infusion of the preferential antagonist of non-N-methyl-D-aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione. Together, these results lead us to propose that systemic 5-hydroxytryptamine2 agonists influence locus coeruleus indirectly, causing tonic activation of a GABAergic input to the locus coeruleus, and facilitating sensory inputs that act via excitatory amino acid receptors within locus coeruleus.[1]


WikiGenes - Universities