Conversion of 4-nitroquinoline 1-oxide (4NQO) to 4-hydroxyaminoquinoline 1-oxide by a dicumarol-resistant hepatic 4NQO nitroreductase in rats and mice.
The product formed from 4-nitroquinoline 1-oxide (4NQO), a potent carcinogen, by the action of mouse NADH:4NQO nitroreductase NR-1 was directly identified as 4-hydroxyaminoquinoline 1-oxide (4HAQO) by high performance liquid chromatography analyses in two systems. In liver cytosols from both male and female mice, NADH:4NQO nitroreductase was the predominant enzyme catalyzing the reduction of 4NQO. Rat liver cytosol catalyzed the conversion of 4NQO to either 4HAQO or a glutathione conjugate depending upon coenzyme or cosubstrate availability. Whereas NAD(P)H:quinone reductase (NAD(P)H:(quinone acceptor) oxidoreductase; DT diaphorase; EC 1.6.99.2) was the predominant 4NQO reductase present in liver cytosol from Sprague-Dawley rats, dicumarol-resistant NADH:4NQO nitroreductase specific activities were comparable with those of mouse liver cytosols. A 4NQO nitroreductase from rat liver cytosol was separated from NAD(P)H:quinone reductase chromatographically and shown to have a strong preference for NADH and to be insensitive to inhibition by dicumarol.[1]References
- Conversion of 4-nitroquinoline 1-oxide (4NQO) to 4-hydroxyaminoquinoline 1-oxide by a dicumarol-resistant hepatic 4NQO nitroreductase in rats and mice. Benson, A.M. Biochem. Pharmacol. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg