The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from neurospora crassa.

The AROM protein of Aspergillus nidulans is a multidomain pentafunctional polypeptide that is active as a dimer and catalyses steps 2-6 in the prechorismate section of the shikimate pathway. The three C-terminal domains (including the type I 3-dehydroquinase) of the AROM protein are homologous with the qutR-encoded QUTR protein that represses transcription of the eight genes comprising the quinic acid utilization (qut) gene cluster, and the two N-terminal domains are homologous with the qutA-encoded QUTA protein that transcribes the qut genes. As part of a larger research programme designed to compare the structures of the three proteins and to probe the domain structure and interaction within each protein, we have overproduced and purified the 3-dehydroquinase domain of the AROM protein. Additionally we have overproduced and purified the qutB-encoded quinate dehydrogenase and overproduced the qa-2 encoded type II 3-dehydroquinase of Neurospora crassa. We report that the AROM 3-dehydroquinase domain has a monomeric native state, with an apparent kcat./Km ratio that is approx. 160-fold lower than the value for the native N. crassa AROM protein. The AROM protein 3-dehydroquinase domain is sensitive to inactivation by borohydride in the presence of the substrate 3-dehydroquinate, confirming that it is a typical type I 3-dehydroquinase. The purified quinate dehydrogenase is bifunctional, being able to metabolize shikimate as a substrate. The apparent Km values for quinate (450 microM), shikimate (1.7 mM) and NAD+ (150 microM) are all similar to values reported for the qa-3-encoded enzyme from N. crassa.[1]

References

 
WikiGenes - Universities