The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL444501     (3S,5S)-1,3,4,5- tetrahydroxycyclohexane-1...

Synonyms: BSPBio_001206, CHEBI:36124, BPBio1_001328, AC1Q5TBM, NSC 1115, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of quinic acid

  • Beyond establishing a fundamentally new route to an important chemical building block, oxidation of microbe-synthesized quinic acid provides an example of how the toxicity of aromatics toward microbes can be circumvented by interfacing chemical catalysis with biocatalysis [1].
  • The positively acting regulator gene QUTA from Aspergillus nidulans has been identified and located within a cluster of quinic acid utilisation (QUT) genes isolated within a recombinant phage lambda (lambda Q1) [2].
  • Acinetobacter Iwoffi RAG-1 produced a quinoprotein QDH apoenzyme since growth on quinic acid only occurred in the presence of PQQ [3].
  • A new caffeoyl quinic acid from aster scaber and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase [4].
  • These analogues were synthesized from quinic acid, and were assayed against type I (Salmonella typhi) and type II (S. coelicolor) dehydroquinases [5].
 

Psychiatry related information on quinic acid

 

High impact information on quinic acid

 

Biological context of quinic acid

 

Anatomical context of quinic acid

 

Associations of quinic acid with other chemical compounds

 

Gene context of quinic acid

  • At Wyeth we solved the first cocrystal structure of a small molecule, quinic acid, with E-selectin [24].
  • The X-ray structure, together with structure based computational methods, was used to design quinic acid based libraries that were synthesized and evaluated for their ability to block the interaction of sLex with P-selectin [24].
  • These genes code for 3-dehydroquinase enzymes of type II, involved in the catabolism of quinic acid [25].
  • In this study, we report that in the virulent, M2-lacking isolate Rhs 1AP, which is isogenic to Rhs 1A1, quinic acid reduces virulence dramatically and induces synthesis of an M2-encoded polypeptide and its respective mRNA [23].
  • Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall [26].
 

Analytical, diagnostic and therapeutic context of quinic acid

References

  1. Benzene-free synthesis of hydroquinone. Ran, N., Knop, D.R., Draths, K.M., Frost, J.W. J. Am. Chem. Soc. (2001) [Pubmed]
  2. Isolation and characterization of the positively acting regulatory gene QUTA from Aspergillus nidulans. Beri, R.K., Whittington, H., Roberts, C.F., Hawkins, A.R. Nucleic Acids Res. (1987) [Pubmed]
  3. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. van Kleef, M.A., Duine, J.A. Arch. Microbiol. (1988) [Pubmed]
  4. A new caffeoyl quinic acid from aster scaber and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Kwon, H.C., Jung, C.M., Shin, C.G., Lee, J.K., Choi, S.U., Kim, S.Y., Lee, K.R. Chem. Pharm. Bull. (2000) [Pubmed]
  5. Design, synthesis and evaluation of bifunctional inhibitors of type II dehydroquinase. Toscano, M.D., Frederickson, M., Evans, D.P., Coggins, J.R., Abell, C., González-Bello, C. Org. Biomol. Chem. (2003) [Pubmed]
  6. Neuroprotective and neurotrophic effects of quinic acids from Aster scaber in PC12 cells. Hur, J.Y., Soh, Y., Kim, B.H., Suk, K., Sohn, N.W., Kim, H.C., Kwon, H.C., Lee, K.R., Kim, S.Y. Biol. Pharm. Bull. (2001) [Pubmed]
  7. An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa. Battogtokh, D., Asch, D.K., Case, M.E., Arnold, J., Schuttler, H.B. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Rearrangement mutations on the 5' side of the qa-2 gene of Neurospora implicate two regions of qa-1F activator-protein interaction. Geever, R.F., Murayama, T., Case, M.E., Giles, N.H. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  9. Molecular analysis of the Neurospora qa-1 regulatory region indicates that two interacting genes control qa gene expression. Huiet, L. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  10. Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Strøman, P., Reinert, W.R., Giles, N.H. J. Biol. Chem. (1978) [Pubmed]
  11. Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Levett, L.J., Si-Hoe, S.M., Liddle, S., Wheeler, K., Smith, D., Lamb, H.K., Newton, G.H., Coggins, J.R., Hawkins, A.R. Biochem. J. (2000) [Pubmed]
  12. Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme. Lamb, H.K., Moore, J.D., Lakey, J.H., Levett, L.J., Wheeler, K.A., Lago, H., Coggins, J.R., Hawkins, A.R. Biochem. J. (1996) [Pubmed]
  13. Cloning the quinic acid (aq) gene cluster from Neurospora crassa: identification of recombinant plasmids containing both qa-2+ and qa-3+. Schweizer, M., Case, M.E., Dykstra, C.C., Giles, N.H., Kushner, S.R. Gene (1981) [Pubmed]
  14. Comparative studies of the quinic acid (qa) cluster in several Neurospora species with special emphasis on the qa-x-qa-2 intergenic region. Asch, D.K., Orejas, M., Geever, R.F., Case, M.E. Mol. Gen. Genet. (1991) [Pubmed]
  15. Studies on the hepatocyte protective activity and the structure-activity relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei. Xiang, T., Xiong, Q.B., Ketut, A.I., Tezuka, Y., Nagaoka, T., Wu, L.J., Kadota, S. Planta Med. (2001) [Pubmed]
  16. Inhibition of xanthine oxidase by phenolic conjugates of methylated quinic acid. Góngora, L., Máñez, S., Giner, R.M., Recio, M.d.e.l. .C., Schinella, G., Ríos, J.L. Planta Med. (2003) [Pubmed]
  17. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Martin, A.K. Br. J. Nutr. (1982) [Pubmed]
  18. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Gonthier, M.P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J.M., Poutanen, K., Aura, A.M. Biomed. Pharmacother. (2006) [Pubmed]
  19. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Jiang, R.W., Lau, K.M., Hon, P.M., Mak, T.C., Woo, K.S., Fung, K.P. Current medicinal chemistry. (2005) [Pubmed]
  20. Control of metabolic flux through the quinate pathway in Aspergillus nidulans. Wheeler, K.A., Lamb, H.K., Hawkins, A.R. Biochem. J. (1996) [Pubmed]
  21. Solute accumulation of chestnut oak and dogwood leaves in response to throughfall manipulation of an upland oak forest. Gebre, G.M., Tschaplinski, T.J. Tree Physiol. (2002) [Pubmed]
  22. Isolation from Cussonia barteri of 1'-O-chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters. Papajewski, S., Vogler, B., Conrad, J., Klaiber, I., Roos, G., Walter, C.U., Süssmuth, R., Kraus, W. Planta Med. (2001) [Pubmed]
  23. Quinic acid induces hypovirulence and expression of a hypovirulence-associated double-stranded RNA in Rhizoctonia solani. Liu, C., Lakshman, D.K., Tavantzis, S.M. Curr. Genet. (2003) [Pubmed]
  24. Quinic acid derivatives as sialyl Lewis(x)-mimicking selectin inhibitors: design, synthesis, and crystal structure in complex with E-selectin. Kaila, N., Somers, W.S., Thomas, B.E., Thakker, P., Janz, K., DeBernardo, S., Tam, S., Moore, W.J., Yang, R., Wrona, W., Bedard, P.W., Crommie, D., Keith, J.C., Tsao, D.H., Alvarez, J.C., Ni, H., Marchese, E., Patton, J.T., Magnani, J.L., Camphausen, R.T. J. Med. Chem. (2005) [Pubmed]
  25. Characterization of a 3-dehydroquinase gene from Actinobacillus pleuropneumoniae with homology to the eukaryotic genes qa-2 and QUTE. Lalonde, G., O'Hanley, P.D., Stocker, B.A., Denich, K.T. Mol. Microbiol. (1994) [Pubmed]
  26. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. Hung, T.M., Na, M., Thuong, P.T., Su, N.D., Sok, D., Song, K.S., Seong, Y.H., Bae, K. Journal of ethnopharmacology. (2006) [Pubmed]
  27. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). Jensen, H.D., Krogfelt, K.A., Cornett, C., Hansen, S.H., Christensen, S.B. J. Agric. Food Chem. (2002) [Pubmed]
 
WikiGenes - Universities