Induction of heat-shock gene expression in postischemic pig liver depends on superoxide generation.
BACKGROUND/AIMS: Both hemorrhagic and cardiogenic shock are associated with hepatic shock gene expression at resuscitation. This study investigated the potential role of intravascular superoxide anion as a proximal trigger of heat shock protein gene expression. METHODS: Preanesthetized pigs were subjected to 120 m of total warm hepatic ischemia. The survival model consisted of warm, total hepatic ischemia and reperfusion (with active portal-systemic bypass) followed by reperfusion and survival for 3 days. Serial hepatic biopsy samples were evaluated for the expression of heat shock protein 72 (HSP-72) messenger RNA (mRNA) by Northern and Western analysis and by in situ RNA hybridization. The possible role of intravascular O2- as a mediator of heat shock response was evaluated by its specific inhibition by the intravenous infusion of recombinant human superoxide dismutase (SOD). RESULTS: Ischemia for 120 minutes followed by 60 minutes of reperfusion caused accumulation of HSP-72 mRNA. Transcripts were localized to hepatocytes. HSP-72 mRNA was detected neither following ischemia alone nor when SOD was infused for 15 minutes at reperfusion. Three days later, transcripts were not detectable, but HSP-72 protein accumulated irrespective of SOD administration. CONCLUSIONS: Warm hepatic ischemia induces the hepatocyte expression of HSP-72 at reperfusion by a mechanism that is dependent upon the superoxide anion, probably generated intravascularly. However, the transient dismutation of superoxide is insufficient to suppress subsequent accumulation of HSP-72.[1]References
- Induction of heat-shock gene expression in postischemic pig liver depends on superoxide generation. Schoeniger, L.O., Andreoni, K.A., Ott, G.R., Risby, T.H., Bulkley, G.B., Udelsman, R., Burdick, J.F., Buchman, T.G. Gastroenterology (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg