The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases.

Thermus thermophilus methionyl-tRNA synthetase consists of two identical subunits with a potential Zn(2+)-binding sequence of Cys-X2-Cys-X13-Cys-X2-His (Nureki, O., Muramatsu, T., Suzuki, K., Kohda, D., Matsuzawa, H., Ohta, T. Miyazawa, T., and Yokoyama, S. (1991) J. Biol. Chem. 266, 3268-3277). Upon chemical modification of the 3 Cys residues of T. thermophilus MetRS with sodium p-(hydroxymercuri)phenylsulfonate, one Zn2+ ion was released from one subunit of the molecule, as monitored with 4-(2-pyridylazo)resorcinol. Site-directed mutagenesis of Cys and His residues in the Zn(2+)-binding sequence reduced the aminoacylation activity; the kcat value was markedly decreased, and the Km values for L-methionine and tRNAf(Met) were increased. Similarly, Cys modification released two Zn2+ ions from T. thermophilus and Escherichia coli isoleucyl-tRNA synthetases and E. coli threonyl-tRNA synthetase, which have Zn(2+)-binding motifs, and impaired their activities. By contrast, three other aminoacyl-tRNA synthetases that lack Zn(2+)-binding motif neither released Zn2+ ion nor lost their activities upon Cys modification. These results indicate that the Zn(2+)-binding sequences are important for catalysis and recognition in the aminoacylation reactions of a subgroup of aminoacyl-tRNA synthetases.[1]


  1. Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. Nureki, O., Kohno, T., Sakamoto, K., Miyazawa, T., Yokoyama, S. J. Biol. Chem. (1993) [Pubmed]
WikiGenes - Universities