The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers.

beta-Alanine transport across intact human intestinal epithelial (Caco-2) cell layers has been investigated. In Na(+)-containing solutions, net absorptive flux of beta-alanine from apical-to-basal surfaces is small or absent, despite Na(+)-dependent intracellular beta-alanine accumulation across both apical and basal surfaces. Upon apical acidification (apical pH 6.0, basal pH 7.5), beta-alanine absorptive flux and accumulation across the apical surface are increased. In Na(+)-free conditions, a significant absorptive flux of beta-alanine is observed, which is markedly stimulated upon apical acidification (pH 6.0). Cellular accumulation of beta-alanine across the apical but not basal surface is observed in Na(+)-free conditions, and this is increased by acidic (pH 6.0) solutions. Absorptive beta-alanine flux in Na(+)-free conditions with acidic apical solutions displays saturation kinetics and competitive inhibition by alanine and glycine, but not valine or serine. Addition of 20 mM beta-alanine to the apical solution of epithelial monolayers loaded with the pH indicator 2',7'-bis(2-carboxyethyl-5(6)-carboxyfluorescein) causes a marked decrement in intracellular pH. beta-Alanine transport is also electrogenic, a concentration-dependent increase in an inward short circuit current being observed in voltage-clamped epithelial monolayers. We conclude that a proton-dependent, but Na(+)-independent, amino acid transporter is expressed at the apical membrane of human intestinal Caco-2 cells, and we provide direct evidence for amino acid-stimulated proton influx across the apical membrane in this intact epithelial cell system.[1]

References

  1. Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers. Thwaites, D.T., McEwan, G.T., Brown, C.D., Hirst, B.H., Simmons, N.L. J. Biol. Chem. (1993) [Pubmed]
 
WikiGenes - Universities