The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular dissection of the mouse interleukin-4 promoter.

Understanding the molecular mechanisms regulating the expression of interleukin 4 (IL-4) may shed light on the differentiation of lymphokine-producing phenotypes of CD4+ T cells. We have identified two DNA segments that are necessary for full phorbol 12-myristate 13-acetate (PMA)-induced activity of the IL-4 promoter region in the thymoma cell line EL4. Through deletion and mutation analyses, one of these segments (-57 through -47) was shown to be indispensable for promoter function. We designated this sequence consensus sequence 1 ( CS1), as it shares homology with a sequence (ATTTTCCNNTG) that appears five times in the proximal 302-base-pair (bp) region 5' of the gene. We examined CS1 in further detail, as well as a second consensus sequence, CS2, located at nucleotides -75 through -65; both are within a minimal 83-bp construct that expresses full promoter activity. CS1- and CS2-spanning oligonucleotides bound apparently distinct PMA-inducible, sequence-specific factors in mobility-shift assays. Multimer constructs linking CS1- or CS2-spanning oligonucleotides to a heterologous promotor revealed that the CS1 construct had the greater enhancer activity in EL4 cells. Mutating the CS1 sequence within the context of the 302-bp promoter abolished all activity of the promoter, while mutating the CS2 sequence alone had little effect. Furthermore, a CS1 multimer could drive a heterologous promoter in an IL-4-producing [helper T-cell type 2 (TH2-type)] T-cell clone but not in a non-IL-4-producing (TH1-type) clone, suggesting a mechanism by which IL-4 production could be differentially regulated in TH subsets.[1]

References

  1. Molecular dissection of the mouse interleukin-4 promoter. Bruhn, K.W., Nelms, K., Boulay, J.L., Paul, W.E., Lenardo, M.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
 
WikiGenes - Universities