Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. We report here the molecular cloning of the nasA and nasB genes, which encode assimilatory nitrate and nitrite reductase, respectively. These genes are tightly linked and probably form a nasBA operon. In vivo protein expression and DNA sequence analysis revealed that the nasA and nasB genes encode 92- and 104-kDa proteins, respectively. The NASA polypeptide is homologous to other prokaryotic molybdoenzymes, and the NASB polypeptide is homologous to eukaryotic and prokaryotic NADH-nitrite reductases. The narL gene product positively regulates expression of the structural genes for respiratory nitrate reductase, narGHJI. Surprisingly, we found that the nasBA operon is tightly linked to the narL-narGHJI region in K. pneumoniae, even though the nitrate assimilatory and respiratory enzymes serve different physiological functions.[1]References
- Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. Lin, J.T., Goldman, B.S., Stewart, V. J. Bacteriol. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg