The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential cellular effects in the toxicity of haloalkene and haloalkane cysteine conjugates to rabbit renal proximal tubules.

The relationship between the covalent binding, uptake, and toxicity produced by S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC) was investigated in suspensions of rabbit renal proximal tubules (RPT). The DCVC and TFEC at concentrations of 25 microM produced a time-dependent (1-6 hours) loss of RPT viability. The TFEC was biotransformed rapidly by beta-lyase to a reactive metabolite which bound covalently to tubular protein. Approximately 63% of the TFEC-equivalents inside the cell were bound to protein. Covalent binding of TFEC-equivalents was associated with a 30% decrease in tubular basal and state 3 respiration, a sevenfold increase in lipid peroxidation, and, ultimately, cell death. The DCVC was biotransformed rapidly to a reactive metabolite which bound covalently to tubular protein. Approximately 90% of the DCVC-equivalents inside the cell were bound covalently to tubular protein. Following exposure to 25 microM DCVC, the binding of DCVC-equivalents was associated with a 17-fold increase in lipid peroxidation but, in contrast to TFEC, had no effect on tubular respiration. However, exposure of RPT to 100 microM DCVC resulted in a ninefold increase in the binding of DCVC-equivalents and a 30% decrease in tubular state 3 respiration. The beta-lyase inhibitor aminooxyacetic acid (AOAA) blocked the covalent binding, mitochondrial dysfunction, lipid peroxidation, and cell death produced by TFEC. The AOAA decreased the covalent binding and the lipid peroxidation produced by DCVC by approximately 60-70% but had no effect on cell death.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

  1. Differential cellular effects in the toxicity of haloalkene and haloalkane cysteine conjugates to rabbit renal proximal tubules. Groves, C.E., Hayden, P.J., Lock, E.A., Schnellmann, R.G. J. Biochem. Toxicol. (1993) [Pubmed]
 
WikiGenes - Universities