The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The G protein beta gamma subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes.

At least 30 G protein-linked receptors stimulate phosphatidylinositol 4,5-bisphosphate phosphodiesterase (phospholipase C beta, PLC beta) through G protein subunits to release intracellular calcium from the endoplasmic reticulum (Clapham, D. E. (1995) Cell 80, 259-268). Although both G alpha and G beta gamma G protein subunits have been shown to activate purified PLC beta in vitro, G alpha q has been presumed to mediate the pertussis toxin-insensitive response in vivo. In this study, we show that G beta gamma plays a dominant role in muscarinic-mediated activation of PLC beta by employing the Xenopus oocyte expression system. Antisense nucleotides and antibodies to G alpha q/11 blocked the m3- mediated signal transduction by inhibiting interaction of the muscarinic receptor with the G protein. Agents that specifically bound free G beta gamma subunits (G alpha-GDP and a beta-adrenergic receptor kinase fragment) inhibited acetylcholine-induced signal transduction to PLC beta, and injection of G beta gamma subunits into oocytes directly induced release of intracellular Ca2+. We conclude that receptor coupling specificity of the G alpha q/G beta gamma heterotrimer is determined by G alpha q; G beta gamma is the predominant signaling molecule activating oocyte PLC beta.[1]


  1. The G protein beta gamma subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. Stehno-Bittel, L., Krapivinsky, G., Krapivinsky, L., Perez-Terzic, C., Clapham, D.E. J. Biol. Chem. (1995) [Pubmed]
WikiGenes - Universities