The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PLCB1  -  phospholipase C, beta 1 (phosphoinositide...

Homo sapiens

Synonyms: 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1, EIEE12, KIAA0581, PI-PLC, PLC-154, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PLCB1

  • Recombinant turkey PLC-beta was purified to homogeneity following expression from a recombinant baculovirus in Sf9 insect cells [1].
  • The identification of the PLC beta isozyme present in human myocardium and the understanding of its regulation by G protein subunits sets the stage for the investigation of possible involvement of this system in the pathophysiology of myocardial hypertrophy [2].
  • The effect of beta gamma subunits may provide a pathway for the regulation of PLC beta isozymes by pertussis toxin-sensitive G proteins or may indicate that the alpha subunit of Gq and its associated beta gamma both participate in regulation of the same phospholipase molecule [3].
  • Small cell lung carcinoma exhibits greater phospholipase C-beta1 expression and edelfosine resistance compared with non-small cell lung carcinoma [4].
  • Both PLC-beta 1 and PLC-beta 2 were purified from extracts of HeLa cells that had been transfected with vaccinia virus containing the corresponding cDNAs [5].

Psychiatry related information on PLCB1

  • No modifications in PLCbeta1 solubility in PBS-, deoxycholate- and sodium dodecylsulphate-soluble fractions have been observed in CJD when compared with controls [6].

High impact information on PLCB1


Chemical compound and disease context of PLCB1


Biological context of PLCB1


Anatomical context of PLCB1


Associations of PLCB1 with chemical compounds

  • In this report, we show that EBP50 inhibits the phospholipase C (PLC)-beta-mediated inositol phosphate production of a Galpha(q)-coupled receptor as well as PLC-beta activation by the constitutively active Galpha(q)-R183C mutant [20].
  • Anti-Gq antibody, but not anti-Gi2 or Gi3 antibody, inhibited both GTP[S]- and GTP/U46619-dependent reconstitution of phosphoinositide hydrolysis with phospholipase C-beta [19].
  • In contrast, only phospholipase C-beta was able to reconstitute GTP-dependent U46619-induced hydrolysis [19].
  • Moreover, the catalytic activities of the recombinant enzyme were indistinguishable from those of native turkey erythrocyte PLC-beta in assays carried out in the presence of cholate and Ca2+, or in assays of activity after reconstitution with G alpha 11 or G-protein beta gamma-subunits [1].
  • Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) of the Gq subfamily activate the PLC beta 1 isoform of PLC [3].

Physical interactions of PLCB1


Regulatory relationships of PLCB1


Other interactions of PLCB1

  • Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway [14].
  • Together, these findings present a quantitative evaluation of the direct interactions between Rac GTPases and PLC-beta isozymes and define a novel role for the PH domain of PLC-beta2 as a putative effector site for Rac GTPases [25].
  • A key step is the activation of phosphatidylinositol-specific phospholipase C (PI-PLC) within seconds following TcR/CD3 stimulation, an event which is strongly enhanced by co-ligation of the CD4 (or CD8) accessory molecule with TcR/CD3 [26].
  • Phospholipase Cbeta and protein kinase C did not appear to significantly contribute to internalization of the TPbeta receptor, suggesting that Galpha(q) induces receptor internalization through a phospholipase Cbeta- and protein kinase C-independent pathway [27].
  • The contents of PLC-beta1 and beta3 were not changed by the differentiation [28].

Analytical, diagnostic and therapeutic context of PLCB1


  1. Molecular cloning, expression and regulatory activity of G alpha 11- and beta gamma-subunit-stimulated phospholipase C-beta from avian erythrocytes. Waldo, G.L., Paterson, A., Boyer, J.L., Nicholas, R.A., Harden, T.K. Biochem. J. (1996) [Pubmed]
  2. Identification and characterization of G protein-regulated phospholipase C in human myocardium. Schnabel, P., Gäs, H., Nohr, T., Camps, M., Böhm, M. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  3. G proteins in signal transduction: the regulation of phospholipase C. Sternweis, P.C., Smrcka, A.V. Ciba Found. Symp. (1993) [Pubmed]
  4. Small cell lung carcinoma exhibits greater phospholipase C-beta1 expression and edelfosine resistance compared with non-small cell lung carcinoma. Strassheim, D., Shafer, S.H., Phelps, S.H., Williams, C.L. Cancer Res. (2000) [Pubmed]
  5. Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. Park, D., Jhon, D.Y., Kriz, R., Knopf, J., Rhee, S.G. J. Biol. Chem. (1992) [Pubmed]
  6. Metabotropic glutamate receptor/phospholipase C pathway: a vulnerable target to Creutzfeldt-Jakob disease in the cerebral cortex. Rodríguez, A., Freixes, M., Dalfó, E., Martín, M., Puig, B., Ferrer, I. Neuroscience (2005) [Pubmed]
  7. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Berstein, G., Blank, J.L., Jhon, D.Y., Exton, J.H., Rhee, S.G., Ross, E.M. Cell (1992) [Pubmed]
  8. Determination of the primary structure of PLC-154 demonstrates diversity of phosphoinositide-specific phospholipase C activities. Katan, M., Kriz, R.W., Totty, N., Philp, R., Meldrum, E., Aldape, R.A., Knopf, J.L., Parker, P.J. Cell (1988) [Pubmed]
  9. Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Mahon, M.J., Donowitz, M., Yun, C.C., Segre, G.V. Nature (2002) [Pubmed]
  10. Expression of phospholipases gamma 1, beta 1, and delta 1 in primary human colon carcinomas and colon carcinoma cell lines. Nomoto, K., Tomita, N., Miyake, M., Xhu, D.B., LoGerfo, P.R., Weinstein, I.B. Mol. Carcinog. (1995) [Pubmed]
  11. Tissue- and cell type-specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C. Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H., Suzuki, K. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  12. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Dalfó, E., Albasanz, J.L., Martin, M., Ferrer, I. Brain Pathol. (2004) [Pubmed]
  13. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. McLaughlin, J.N., Shen, L., Holinstat, M., Brooks, J.D., Dibenedetto, E., Hamm, H.E. J. Biol. Chem. (2005) [Pubmed]
  14. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation. Oh, Y.S., Jo, N.W., Choi, J.W., Kim, H.S., Seo, S.W., Kang, K.O., Hwang, J.I., Heo, K., Kim, S.H., Kim, Y.H., Kim, I.H., Kim, J.H., Banno, Y., Ryu, S.H., Suh, P.G. Mol. Cell. Biol. (2004) [Pubmed]
  15. Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2. Hwang, J.I., Heo, K., Shin, K.J., Kim, E., Yun, C., Ryu, S.H., Shin, H.S., Suh, P.G. J. Biol. Chem. (2000) [Pubmed]
  16. Phospholipase C-beta3 and -beta1 form homodimers, but not heterodimers, through catalytic and carboxyl-terminal domains. Zhang, Y., Vogel, W.K., McCullar, J.S., Greenwood, J.A., Filtz, T.M. Mol. Pharmacol. (2006) [Pubmed]
  17. Impaired signal transduction in neonatal platelets. Israels, S.J., Cheang, T., Roberston, C., McMillan-Ward, E.M., McNicol, A. Pediatr. Res. (1999) [Pubmed]
  18. Effects of gelsolin on human platelet cytosolic phosphoinositide-phospholipase C isozymes. Banno, Y., Nakashima, T., Kumada, T., Ebisawa, K., Nonomura, Y., Nozawa, Y. J. Biol. Chem. (1992) [Pubmed]
  19. Reconstitution of thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-beta and GTP-binding protein Gq. Baldassare, J.J., Tarver, A.P., Henderson, P.A., Mackin, W.M., Sahagan, B., Fisher, G.J. Biochem. J. (1993) [Pubmed]
  20. Regulation of GTP-binding protein alpha q (Galpha q) signaling by the ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50). Rochdi, M.D., Watier, V., La Madeleine, C., Nakata, H., Kozasa, T., Parent, J.L. J. Biol. Chem. (2002) [Pubmed]
  21. The Pleckstrin homology domains of phospholipases C-beta and -delta confer activation through a common site. Guo, Y., Philip, F., Scarlata, S. J. Biol. Chem. (2003) [Pubmed]
  22. Role of the gamma subunit prenyl moiety in G protein beta gamma complex interaction with phospholipase Cbeta. Fogg, V.C., Azpiazu, I., Linder, M.E., Smrcka, A., Scarlata, S., Gautam, N. J. Biol. Chem. (2001) [Pubmed]
  23. Proteolytic modification of membrane-associated phospholipase C-beta by mu-calpain enhances its activation by G-protein beta gamma subunits in human platelets. Banno, Y., Asano, T., Nozawa, Y. FEBS Lett. (1994) [Pubmed]
  24. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Hepler, J.R., Berman, D.M., Gilman, A.G., Kozasa, T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  25. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K., Sondek, J. J. Biol. Chem. (2003) [Pubmed]
  26. CD45 modulates T cell receptor/CD3-induced activation of human thymocytes via regulation of tyrosine phosphorylation. Turka, L.A., Kanner, S.B., Schieven, G.L., Thompson, C.B., Ledbetter, J.A. Eur. J. Immunol. (1992) [Pubmed]
  27. Galphaq-coupled receptor internalization specifically induced by Galphaq signaling. Regulation by EBP50. Rochdi, M.D., Parent, J.L. J. Biol. Chem. (2003) [Pubmed]
  28. Decrease in thromboxane A2 receptor expression by differentiation with dibutyryl cyclic AMP in 1321N1 human astrocytoma cells. Honma, S., Nakahata, N., Kobayashi, H., Ikeda, S., Takeda, N., Ohizumi, Y. Prostaglandins Other Lipid Mediat. (1999) [Pubmed]
  29. Molecular characterization of the human PLC beta1 gene. Peruzzi, D., Aluigi, M., Manzoli, L., Billi, A.M., Di Giorgio, F.P., Morleo, M., Martelli, A.M., Cocco, L. Biochim. Biophys. Acta (2002) [Pubmed]
  30. Inhibition of serum- and ras-stimulated DNA synthesis by antibodies to phospholipase C. Smith, M.R., Liu, Y.L., Kim, H., Rhee, S.G., Kung, H.F. Science (1990) [Pubmed]
  31. Characterization of the phosphatidylinositol-specific phospholipase C isozymes present in the bovine parathyroid and in human kidney HEK293 cells stably transfected with the human parathyroid Ca2+-sensing receptor. Darè, E., Kifor, O., Brown, E.M., Weber, G. J. Mol. Endocrinol. (1998) [Pubmed]
WikiGenes - Universities