The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Calmodulin binds to specific sequences in the cytoplasmic domain of C-CAM and down-regulates C-CAM self-association.

C-CAM is a cell adhesion molecule belonging to the immunoglobulin supergene family and is known to mediate calcium-independent homophilic cell-cell binding. Two major isoforms, C-CAM1 and C-CAM2, which differ in their cytoplasmic domains, have been identified. Previous investigations have demonstrated that both cytoplasmic domains can bind calmodulin in a calcium-dependent reaction. In this investigation, peptides corresponding to the cytoplasmic domains of C-CAM were synthesized on cellulose membranes and used to map the binding sites for 125I- labeled calmodulin. Both C-CAM1 and C-CAM2 had one strong calmodulin-binding site in the membrane-proximal region. Those binding regions were conserved in C-CAM from rat, mouse, and man. In addition, C-CAM1 from rat and mouse contained a weaker binding site in the distal region of the cytoplasmic domain. Biosensor experiments were performed to determine rate and equilibrium constants of the C-CAM/calmodulin interaction. An association rate constants of 3.3 x 10(5) M-1 s-1 and two dissociation rate constants of 2.2 x 10(-2) and 3.1 x 10(-5) s-1 were determined. These correspond to equilibrium dissociation constants of 6.7 x 10(-8) and 9.4 x 10(-11) M, respectively. In dot-blot binding experiments, it was found that binding of calmodulin causes a down-regulation of the homophilic self-association of C-CAM. This suggests that calmodulin can regulate the functional activity of C-CAM.[1]

References

 
WikiGenes - Universities