The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Two distinct quinoprotein amine oxidases are induced by n-butylamine in the mycelia of Aspergillus niger AKU 3302. Purification, characterization, cDNA cloning and sequencing.

Two distinct quinoprotein amine oxidases were found in Aspergillus niger mycelia grown on n-butylamine medium and purified using chromatographic techniques. The respective enzymes were termed AO-I, which had already been isolated, and AO-II, a new enzyme found in this study. HPLC indicated that their molecular masses are 150 kDa and 80 kDa, respectively. On SDS/PAGE, the enzymes gave a similar but distinct mobility, which corresponds to 75 kDa for the subunit dimeric AO-I and 80 kDa for monomeric AO-II. The absorption spectra of both enzymes were different from each other; the absorption maxima in the visible region were at 490 nm for AO-I and 420 nm for AO-II. The enzymes showed positive quinone staining, comparable substrate specificity, and sensitivity to inhibitors typical for copper/topa quinone-containing amine oxidases, but they had different copper contents and also differed in their N-terminal sequences. Their peptide maps showed almost identical patterns, with the exception of two additional bands for AO-II. Among the peptides obtained from digestion of AO-II, peptides with sequences corresponding to the N-terminal part of AO-I were detected. Polyclonal antibodies raised against AO-I and AO-II recognized both enzymes, but with different specificities. Using precipitation with AO-I, the antibody prepared against AO-II was purified and was shown to be specific only for AO-II. The cDNA of AO-I was cloned and sequenced. A highly conserved tetrapeptide sequence, Asn-Tyr-Glu-Tyr, was identified in which the first tyrosine residue (Tyr404) that could be converted to topa quinone was present in the 670-residue deduced amino acid sequence. Northern blot analysis indicated that AO-I was highly expressed in A. niger grown on n-butylamine as a single nitrogen source. Genomic Southern blot analysis confirmed that both enzymes are likely to be encoded by the same gene.[1]

References

  1. Two distinct quinoprotein amine oxidases are induced by n-butylamine in the mycelia of Aspergillus niger AKU 3302. Purification, characterization, cDNA cloning and sequencing. Frébort, I., Tamaki, H., Ishida, H., Pec, P., Luhová, L., Tsuno, H., Halata, M., Asano, Y., Kato, Y., Matsushita, K., Toyama, H., Kumagai, H., Adachi, O. Eur. J. Biochem. (1996) [Pubmed]
 
WikiGenes - Universities