The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A synthetic peptide corresponding to the Rab4 hypervariable carboxyl-terminal domain inhibits insulin action on glucose transport in rat adipocytes.

The present study was conducted to examine the involvement of Rab4, a low molecular weight GTP-binding protein, in the action of insulin on glucose transport. A synthetic peptide corresponding to the Rab4 hypervariable carboxyl-terminal domain, Rab4-(191-210), was successfully transferred into rat adipocytes by electroporation and inhibited insulin-stimulated glucose transport by about 50% without affecting the basal transport activity. In contrast, synthetic peptides corresponding to the Rab3C and Rab3D carboxyl-terminal hypervariable domain had little effect on insulin action on glucose transport. The Rab4-(191-210) peptide also reduced insulin-induced GLUT4 translocation from the intracellular pool to the plasma membrane. Furthermore, the Rab4-(191-210) peptide reduced both insulin-induced glucose transport and GLUT4 translocation in the presence of a major histocompatibility complex class I antigen-derived peptide, D(k)-(62-85), which is a potent inhibitor of GLUT4 internalization, suggesting that the peptide inhibited exocytotic recruitment of GLUT4-containing vesicles. The Rab4-(191-210) peptide also inhibited GTP gamma S-stimulated glucose transport. In addition, insulin-stimulated glucose transport was inhibited by the addition of anti-Rab4 antibody. These results suggest that Rab4 protein plays a crucial role in insulin action on GLUT4 translocation, especially in exocytotic recruitment by the hormone of the glucose transporter to the plasma membrane from the intracellular retention pool.[1]


WikiGenes - Universities