The multidrug-resistance gene in gene therapy of cancer and hematopoietic disorders.
Chemoresistance genes have been identified as an impediment to anticancer drug treatment. In particular, P-glycoprotein, the product of the multidrug-resistance (MDR1) gene, plays a major role in clinical treatment failure. Conversely, expression of an MDR1 cDNA in bone marrow of transgenic animals renders hematopoietic cells chemoresistant. Efficient transfer of drug-resistance genes to normal hematopoietic progenitor cells has been achieved with the use of retroviral vectors. In this article we review approaches which use the multidrug-resistance gene to protect bone marrow from myelosuppression following chemotherapy and as a selectable markerin vivo to increase the expression of nonselectable genes which correct hereditary diseases of the hematopoietic system.[1]References
- The multidrug-resistance gene in gene therapy of cancer and hematopoietic disorders. Licht, T., Pastan, I., Gottesman, M.M., Herrmann, F. Ann. Hematol. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg