Intracluster restriction of Fc receptor gamma-chain tyrosine phosphorylation subverted by a protein-tyrosine phosphatase inhibitor.
This study shows that aggregation of U937 cell high affinity IgG Fc receptor (Fc gamma RI) results in the transient tyrosine phosphorylation of Fc gamma RI gamma-chain but not the phosphorylation of gamma-chains associated with nonaggregated IgA Fc receptors (Fc alpha R) on the same cells. Thus, normally, tyrosine phosphorylation of gamma-chains is limited to FcR in aggregates. In contrast, aggregation of Fc gamma RI in the presence of vanadate induced the sustained tyrosine phosphorylation of Fc gamma RI gamma-chains and the rapid and extensive phosphorylation of nonaggregated Fc alpha R gamma-chains and low affinity IgG Fc receptors (Fc gamma RII). This global phosphorylation of motifs on nonaggregated FcR was also detected upon aggregation of Fc alpha R or Fc gamma RII, which induced the phosphorylation of nonaggregated Fc gamma RI gamma-chains. Vanadate prevented dephosphorylation of proteins and increased kinase activity in stimulated cells. Evidence failed to support alternative explanations such as acquisition of phospho-gamma through subunit exchange or a coalescence of nonaggregated with aggregated FcR. It is likely, therefore, that activated kinases interacted with nonaggregated FcR in stimulated cells. Pervanadate induced the tyrosine phosphorylation of gamma-chains in the absence of FcR cross-linking, indicating that the kinases could be activated by phosphatase inhibition and could react with nonaggregated substrates. We conclude that under normal conditions there is a vanadate-sensitive mechanism that prevents tyrosine phosphorylation of nonaggregated FcR gamma-chain motifs in activated cells, restricting their phosphorylation to aggregates.[1]References
- Intracluster restriction of Fc receptor gamma-chain tyrosine phosphorylation subverted by a protein-tyrosine phosphatase inhibitor. Pfefferkorn, L.C., Swink, S.L. J. Biol. Chem. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg