The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Intracluster restriction of Fc receptor gamma-chain tyrosine phosphorylation subverted by a protein-tyrosine phosphatase inhibitor.

This study shows that aggregation of U937 cell high affinity IgG Fc receptor (Fc gamma RI) results in the transient tyrosine phosphorylation of Fc gamma RI gamma-chain but not the phosphorylation of gamma-chains associated with nonaggregated IgA Fc receptors (Fc alpha R) on the same cells. Thus, normally, tyrosine phosphorylation of gamma-chains is limited to FcR in aggregates. In contrast, aggregation of Fc gamma RI in the presence of vanadate induced the sustained tyrosine phosphorylation of Fc gamma RI gamma-chains and the rapid and extensive phosphorylation of nonaggregated Fc alpha R gamma-chains and low affinity IgG Fc receptors (Fc gamma RII). This global phosphorylation of motifs on nonaggregated FcR was also detected upon aggregation of Fc alpha R or Fc gamma RII, which induced the phosphorylation of nonaggregated Fc gamma RI gamma-chains. Vanadate prevented dephosphorylation of proteins and increased kinase activity in stimulated cells. Evidence failed to support alternative explanations such as acquisition of phospho-gamma through subunit exchange or a coalescence of nonaggregated with aggregated FcR. It is likely, therefore, that activated kinases interacted with nonaggregated FcR in stimulated cells. Pervanadate induced the tyrosine phosphorylation of gamma-chains in the absence of FcR cross-linking, indicating that the kinases could be activated by phosphatase inhibition and could react with nonaggregated substrates. We conclude that under normal conditions there is a vanadate-sensitive mechanism that prevents tyrosine phosphorylation of nonaggregated FcR gamma-chain motifs in activated cells, restricting their phosphorylation to aggregates.[1]


WikiGenes - Universities