The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia.

Myocardial regions perfused through a coronary stenosis may cease contracting, but remain viable. Clinical observations suggest that increased glucose utilization may be an adaptive mechanism in such "hibernating" regions. In this study, we used a combination of 13C-NMR spectroscopy, GC-MS analysis, and tissue biochemical measurements to track glucose through intracellular metabolism in intact dogs infused with [1-13C]glucose during a 3-4-h period of acute ischemic hibernation. During low-flow ischemia [3-13C]alanine enrichment was higher, relative to plasma [1-13C]glucose enrichment, in ischemic than in nonischemic regions of the heart, suggesting a greater contribution of exogenous glucose to glycolytic flux in the ischemic region (approximately 72 vs. approximately 28%, P < 0.01). Both the fraction of glycogen synthase present in the physiologically active glucose-6-phosphate-independent form (46 +/- 10 vs. 9 +/- 6%, P < 0.01) and the rate of incorporation of circulating glucose into glycogen (94 +/- 25 vs. 20 +/- 15 nmol/gram/min, P < 0.01) were also greater in ischemic regions. Measurement of steady state [4-13C)glutamate/[3-13C]alanine enrichment ratios demonstrated that glucose-derived pyruvate supported 26-36% of total tricarboxylic acid cycle flux in all regions, however, indicating no preference for glucose over fat as an oxidative substrate in the ischemic myocardium. Thus during sustained regional low-flow ischemia in vivo, the ischemic myocardium increases its utilization of exogenous glucose as a substrate. Upregulation is restricted to cytosolic utilization pathways, however (glycolysis and glycogen synthesis), and fat continues to be the major source of mitochondrial oxidative substrate.[1]


  1. Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia. McNulty, P.H., Sinusas, A.J., Shi, C.Q., Dione, D., Young, L.H., Cline, G.C., Shulman, G.I. J. Clin. Invest. (1996) [Pubmed]
WikiGenes - Universities