The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration.

Hyperglycemia is believed to be a major cause of diabetic vascular complications. To elucidate the effect of hyperglycemia on vascular response, we studied hyperproliferation, hypertrophy, and the natriuretic peptide response of vascular smooth muscle cells under high-glucose conditions. We observed that cells cultured in high glucose (22.2 mmol/L) showed hyper-proliferation and hypertrophy and that natriuretic peptide receptor responses were suppressed compared with cells cultured in normal glucose (5.6 mmol/L). We also examined phospholipase D and protein kinase C activities and found that in high-glucose conditions such activities are higher than in cells cultured in normal glucose. The activation of phospholipase D was not prevented by coincubation with 1 mumol/L protein kinase C(19-36), a specific protein kinase C inhibitor, but the activation of protein kinase C was. Protein kinase C(19-36) also markedly attenuated vascular hyperproliferation and hypertrophy as well as glucose-induced suppression of natriuretic peptide receptor response. These results show that hyperglycemia may be linked to vascular hyperproliferation, hypertrophy, and a suppressed natriuretic peptide receptor response, which are caused by increased phospholipase D and protein kinase C activities.[1]


  1. Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration. Yasunari, K., Kohno, M., Kano, H., Yokokawa, K., Horio, T., Yoshikawa, J. Hypertension (1996) [Pubmed]
WikiGenes - Universities