Role of Olf-1 and Pax-6 transcription factors in neurodevelopment.
The Olf-1 transcription factor is expressed in olfactory sensory neurons where it regulates the expression of genes that encode components of the odorant signal transduction cascade and contributes to the terminal phenotype of these sensory neurons. We examined the pattern of expression of Olf-1 protein during mouse embryogenesis and observed Olf-1 expression transiently in a subset of neural precursor cells in the CNS and peripheral nervous system. The expression of Olf-1 protein was enriched in sensory components and coincided with postmitotic cells and the initiation of overt differentiation within the nervous system. The spatial and temporal patterns of Olf-1 expression during development suggest a role in neurogenesis that is common among different neural cell types. In parallel, the expression pattern of Pax-6, a transcription factor that is widely expressed in the developing nervous system, including the visual and olfactory systems, was examined with a C-terminal antibody. In the retina, Pax-6 protein is detected in the lens, the cornea, and the neural and pigmented retinas. In the olfactory epithelium, Pax-6 protein is expressed exclusively in cells of non-neuronal lineage, including sustentacular cells, basal cells, and Bowman's glands. The nonoverlapping, cellular localization patterns of Pax-6 and Olf-1 demarcate distinct cell lineages within the developing olfactory epithelium.[1]References
- Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. Davis, J.A., Reed, R.R. J. Neurosci. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg