The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Attenuated glycogenolysis reduces glycolytic catabolite accumulation during ischemia in preconditioned rat hearts.

Prior transient episodes of ischemia ("ischemic preconditioning") reduce lactate accumulation and attenuate acidosis during a subsequent prolonged ischemic insult. The mechanisms responsible for attenuated glycolytic catabolite accumulation have not been established but may include earlier exhaustion of glycogen stores, slowed glycogenolysis before complete glycogen depletion, and/or inhibition of glycolysis. Simultaneous repeated measures of myocardial glycogen and the rates of glycolysis, glycogenolysis, glucose utilization, and glycolytic ATP production were obtained during total ischemia by 13C nuclear magnetic resonance spectroscopy in control and ischemia-preconditioned isolated rat hearts. Both [13C]glycolytic and [13C]glycogenolytic rates were significantly lower during total ischemia in preconditioned compared with control hearts (0.77 +/- 0.04 versus 1.06 +/- 0.06 mumol/min per gram wet weight [P < .01] for glycolysis and 0.15 +/- 0.07 versus 0.78 +/- 0.12 mumol/ min per gram wet weight [P < .001] for glycogenolysis, respectively, at 2.5 minutes of ischemia). Slowed glycolysis was present even during the early minutes of ischemia, when significant amounts of available [13C]glycogen were still present. Importantly, the reduction in the rate of glycogenolysis was larger and out of proportion to the reduction in glycolysis and occurred despite an increase in glucose utilization in preconditioned hearts (2.23 +/- 0.15 versus 1.5 +/- 0.10 mumol/min per gram wet weight at 1.25 minutes, P < .01). During early ischemia, conversion of glycogen phosphorylase to the a or "active" form was less in preconditioned than in control hearts (29.1 +/- 2.6% versus 41.2 +/- 9.8%, respectively; P < .05). Taken together, these findings demonstrate that ischemic preconditioning significantly depresses glycolytic catabolite accumulation during sustained ischemia not by more severe glycolytic inhibition or exhaustion of glycogen stores but by depressed glycogenolysis from the onset of ischemia.[1]


  1. Attenuated glycogenolysis reduces glycolytic catabolite accumulation during ischemia in preconditioned rat hearts. Weiss, R.G., de Albuquerque, C.P., Vandegaer, K., Chacko, V.P., Gerstenblith, G. Circ. Res. (1996) [Pubmed]
WikiGenes - Universities