The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis.

A rapid increase in the prevalence of beta-lactamase-producing Moraxella (Branhamella) catarrhalis strains has been noticed during the last decades. Today, more than 80% of strains isolated worldwide produce beta-lactamase. To investigate beta-lactamase(s) of M. catarrhalis at the molecular level, the BRO-1 beta-lactamase gene ( bla) was isolated as part of a 4,223-bp HindIII fragment. Sequence analysis indicated that bla encodes a polypeptide of 314 amino acid residues. Insertional inactivation of bla in M. catarrhalis resulted in complete abrogation of beta-lactamase production and ampicillin resistance, demonstrating that bla is solely responsible for beta-lactam resistance. Comparison with other beta-lactamases suggested that M. catarrhalis beta-lactamase is a unique enzyme with conserved residues at the active sites. The presence of a signal sequence for lipoproteins suggested that it is lipid modified at its N terminus. In keeping with this assumption was the observation that 10% of beta-lactamase activity was found in the membrane compartment of M. catarrhalis. M. catarrhalis strains produce two types of beta-lactamase, BRO-1 and BRO-2, which differ in their isoelectric points. The BRO-1 and BRO-2 genes from two ATCC strains of M. catarrhalis were sequenced, and only one amino acid difference was found between the predicted products. However, there was a 21-bp deletion in the promoter region of the BRO-2 gene, possibly explaining the lower level of production of BRO-2. The G + C content of bla (31%) was significantly lower than those of the flanking genes (47 and 50%), and the overall G + C content of the M. catarrhalis genome (41%). These results indicate that bla was acquired by horizontal gene transfer from another, still unknown species.[1]


  1. Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis. Bootsma, H.J., van Dijk, H., Verhoef, J., Fleer, A., Mooi, F.R. Antimicrob. Agents Chemother. (1996) [Pubmed]
WikiGenes - Universities