The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Moraxella


High impact information on Moraxella

  • Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium [6].
  • In contrast, related Moraxella subspecies (n = 13) or other human pathogenic bacteria (n = 13) do not bind C3 or methylamine-treated C3 [7].
  • The UspA1 mutants showed a decreased C4BP binding (37.6% reduction), whereas the UspA2-deficient Moraxella mutants displayed a strongly reduced (94.6%) C4BP binding compared with the wild type [8].
  • Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B [9].
  • Two extended regions of significant sequence homology with hormone-sensitive lipase and with lipase 2 from Moraxella TA144 were identified, whereas similarity to carboxyl esterases was restricted to the region encompassing the putative active site, indicating that DAC should be classified as esterase [10].

Chemical compound and disease context of Moraxella


Biological context of Moraxella


Anatomical context of Moraxella


Gene context of Moraxella

  • Analysis of the immunological responses to transferrin and lactoferrin receptor proteins from Moraxella catarrhalis [24].
  • The Moraxella sp. strain B gene dehH1, encoding fluoroacetate dehalogenase, was placed under the control of both the GPD1 and CYC1 promoters [25].
  • Cefcanel was hydrolyzed by TEM-1, TEM-3 and Moraxella Bro-1 beta-lactamases [26].
  • A hemolytic bystander assay was used to assess the functional serum mannose-binding lectin (MBL) activating capacity of five isolates of Moraxella catarrhalis obtained from children who suffered recurrent acute otitis media episodes [27].
  • One detectable cytoplasmic SOD was identified in the human mucosal pathogen Moraxella catarrhalis, and the gene responsible for the SOD activity, sodA, was isolated from a recent pediatric clinical isolate (strain 7169) [28].

Analytical, diagnostic and therapeutic context of Moraxella


  1. Acute bronchitis: results of U.S. and European trials of antibiotic therapy. Dere, W.H. Am. J. Med. (1992) [Pubmed]
  2. Trends in antimicrobial susceptibility of bacterial pathogens of the respiratory tract. Doern, G.V. Am. J. Med. (1995) [Pubmed]
  3. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences. Rentier-Delrue, F., Mande, S.C., Moyens, S., Terpstra, P., Mainfroid, V., Goraj, K., Lion, M., Hol, W.G., Martial, J.A. J. Mol. Biol. (1993) [Pubmed]
  4. Susceptibilities of Haemophilus influenzae and Moraxella catarrhalis to ABT-773 compared to their susceptibilities to 11 other agents. Credito, K.L., Lin, G., Pankuch, G.A., Bajaksouzian, S., Jacobs, M.R., Appelbaum, P.C. Antimicrob. Agents Chemother. (2001) [Pubmed]
  5. Cefprozil. A review of its antibacterial activity, pharmacokinetic properties, and therapeutic potential. Wiseman, L.R., Benfield, P. Drugs (1993) [Pubmed]
  6. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Langin, D., Laurell, H., Holst, L.S., Belfrage, P., Holm, C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity. Nordström, T., Blom, A.M., Tan, T.T., Forsgren, A., Riesbeck, K. J. Immunol. (2005) [Pubmed]
  8. The emerging pathogen Moraxella catarrhalis interacts with complement inhibitor C4b binding protein through ubiquitous surface proteins A1 and A2. Nordström, T., Blom, A.M., Forsgren, A., Riesbeck, K. J. Immunol. (2004) [Pubmed]
  9. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B. Liu, J.Q., Kurihara, T., Ichiyama, S., Miyagi, M., Tsunasawa, S., Kawasaki, H., Soda, K., Esaki, N. J. Biol. Chem. (1998) [Pubmed]
  10. Human liver arylacetamide deacetylase. Molecular cloning of a novel esterase involved in the metabolic activation of arylamine carcinogens with high sequence similarity to hormone-sensitive lipase. Probst, M.R., Beer, M., Beer, D., Jenö, P., Meyer, U.A., Gasser, R. J. Biol. Chem. (1994) [Pubmed]
  11. Moraxella catarrhalis--infected alveolar epithelium induced monocyte recruitment and oxidative burst. Rosseau, S., Wiechmann, K., Moderer, S., Selhorst, J., Mayer, K., Krüll, M., Hocke, A., Slevogt, H., Seeger, W., Suttorp, N., Seybold, J., Lohmeyer, J. Am. J. Respir. Cell Mol. Biol. (2005) [Pubmed]
  12. Canadian ciprofloxacin susceptibility study: comparative study from 15 medical centers. Canadian Ciprofloxacin Study Group. Blondeau, J.M., Yaschuk, Y. Antimicrob. Agents Chemother. (1996) [Pubmed]
  13. The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway. Williams, R.J., Evans, W.C. Biochem. J. (1975) [Pubmed]
  14. Activities and postantibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Davies, T.A., Kelly, L.M., Hoellman, D.B., Ednie, L.M., Clark, C.L., Bajaksouzian, S., Jacobs, M.R., Appelbaum, P.C. Antimicrob. Agents Chemother. (2000) [Pubmed]
  15. A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Hill, D.J., Virji, M. Mol. Microbiol. (2003) [Pubmed]
  16. Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Van Wart, S., Phillips, L., Ludwig, E.A., Russo, R., Gajjar, D.A., Bello, A., Ambrose, P.G., Costanzo, C., Grasela, T.H., Echols, R., Grasela, D.M. Antimicrob. Agents Chemother. (2004) [Pubmed]
  17. Roles of 3-deoxy-D-manno-2-octulosonic acid transferase from Moraxella catarrhalis in lipooligosaccharide biosynthesis and virulence. Peng, D., Choudhury, B.P., Petralia, R.S., Carlson, R.W., Gu, X.X. Infect. Immun. (2005) [Pubmed]
  18. Moraxella boevrei sp. nov., a new Moraxella species found in goats. Kodjo, A., Richard, Y., Tønjum, T. Int. J. Syst. Bacteriol. (1997) [Pubmed]
  19. A hag mutant of Moraxella catarrhalis strain O35E is deficient in hemagglutination, autoagglutination, and immunoglobulin D-binding activities. Pearson, M.M., Lafontaine, E.R., Wagner, N.J., St Geme, J.W., Hansen, E.J. Infect. Immun. (2002) [Pubmed]
  20. Interpretation of gram-stained sputa containing Moraxella (Branhamella) catarrhalis. Ainsworth, S.M., Nagy, S.B., Morgan, L.A., Miller, G.R., Perry, J.L. J. Clin. Microbiol. (1990) [Pubmed]
  21. S-carboxymethylcysteine inhibits the attachment of Streptococcus pneumoniae to human pharyngeal epithelial cells. Cakan, G., Turkoz, M., Turan, T., Ahmed, K., Nagatake, T. Microb. Pathog. (2003) [Pubmed]
  22. Discrimination between apo and iron-loaded forms of transferrin by transferrin binding protein B and its N-terminal subfragment. Retzer, M.D., Yu, R., Zhang, Y., Gonzalez, G.C., Schryvers, A.B. Microb. Pathog. (1998) [Pubmed]
  23. The CD19 molecule is crucial for MID-dependent activation of tonsillar B cells from children. Hadzic, R., Forsgren, A., Cardell, L.O., Riesbeck, K., Wingren, A.G. Scand. J. Immunol. (2005) [Pubmed]
  24. Analysis of the immunological responses to transferrin and lactoferrin receptor proteins from Moraxella catarrhalis. Yu, R.H., Bonnah, R.A., Ainsworth, S., Schryvers, A.B. Infect. Immun. (1999) [Pubmed]
  25. Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers in Saccharomyces cerevisiae. van den Berg, M.A., Steensma, H.Y. Yeast (1997) [Pubmed]
  26. In vitro activity of cefcanel versus other oral cephalosporins. Chin, N.X., Gu, J.W., Neu, H.C. Eur. J. Clin. Microbiol. Infect. Dis. (1991) [Pubmed]
  27. Moraxella catarrhalis is only a weak activator of the mannose-binding lectin (MBL) pathway of complement activation. Hays, J.P., Ott, A., Verduin, C.M., van Belkum, A., Kuipers, S. FEMS Microbiol. Lett. (2005) [Pubmed]
  28. Inactivation of the Moraxella catarrhalis superoxide dismutase SodA induces constitutive expression of iron-repressible outer membrane proteins. Luke, N.R., Karalus, R.J., Campagnari, A.A. Infect. Immun. (2002) [Pubmed]
  29. Use of serology to diagnose pneumonia caused by nonencapsulated Haemophilus influenzae and Moraxella catarrhalis. Burman, L.A., Leinonen, M., Trollfors, B. J. Infect. Dis. (1994) [Pubmed]
  30. Comparative in-vitro activity of CP-99219, a new quinolone, against respiratory pathogens. Sefton, A.M., Maskell, J.P., Seymour, A.C., Minassian, M., Williams, J.D. J. Antimicrob. Chemother. (1996) [Pubmed]
  31. Interesting sequence differences between the pilin gene inversion regions of Moraxella lacunata ATCC 17956 and Moraxella bovis Epp63. Rozsa, F.W., Marrs, C.F. J. Bacteriol. (1991) [Pubmed]
  32. Molecular cloning and characterization of outer membrane protein E of Moraxella (Branhamella) catarrhalis. Bhushan, R., Craigie, R., Murphy, T.F. J. Bacteriol. (1994) [Pubmed]
  33. Pulmonary penetration of ceftazidime. Cazzola, M., Gabriella Matera, M., Polverino, M., Santangelo, G., De Franchis, I., Rossi, F. Journal of chemotherapy (Florence, Italy) (1995) [Pubmed]
WikiGenes - Universities