The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient.

Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction with an incidence of 1 in 5000 live births. HSCR may be inherited as a single gene disorder with reduced penetrance or as a multigenic trait. HSCR mutations have been identified in the RET receptor tyrosine kinase, endothelin-B receptor (EDNRB) and its physiological ligand, endothelin 3 (EDN3). Although RET's ligand has remained elusive, it is expected to be an extracellular neurotrophic molecule expressed in the developing gut and kidney mesenchyme, based on the phenotypes of intestinal aganglionosis and renal agenesis observed in homozygous RET knockout (Ret -/-) mice. The glial cell line-derived neurotrophic factor (GDNF) is such a molecule. Recently, mice carrying two null alleles for Gdnf were shown to exhibit phenotypes remarkably similar to Ret-/- animals. We screened 106 unrelated HSCR patients for mutations in GDNF by direct sequencing. We identified one familial mutation in a HSCR patient with a known de novo RET mutation and malrotation of the gut. No haplotype sharing was evident in any of 36 HSCR kindreds typed for microsatellite markers surrounding GDNF on human chromosome 5p. Our data suggest that GDNF is a minor contributor to human HSCR susceptibility and that loss of its function in enteric neurogenesis may be compensated for by other neurotrophic factors or via other pathways. However, it may be that in rare instances, RET and GDNF mutations act in concert to produce an enteric phenotype.[1]


  1. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Angrist, M., Bolk, S., Halushka, M., Lapchak, P.A., Chakravarti, A. Nat. Genet. (1996) [Pubmed]
WikiGenes - Universities