The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tumor necrosis factor receptors ( Tnfr) in mouse fibroblasts deficient in Tnfr1 or Tnfr2 are signaling competent and activate the mitogen-activated protein kinase pathway with differential kinetics.

To dissect tumor necrosis factor receptor (Tnfr)-1 (CD120a) and Tnfr2 (CD120b)-dependent signal transduction pathways, primary fibroblasts isolated from inguinal adipose tissue of wild type (wt), tnfr1(o), tnfr2(o), and tnfr1(o)/tnfr2(o) mice were studied. The mitogen-activated protein kinases Erk1 and Erk2 were found to be tyrosine- phosphorylated and activated by Tnf treatment in all wt, tnfr1(o), and tnfr2(o) fibroblasts; the activation was down-regulated 60 min after the start of steady state Tnf treatment. Distinct kinetics of Erk1 and Erk2 activation were detected; the Tnfr1- mediated activation of Erk1 and Erk2 started more slowly and persisted for more prolonged times as compared with Tnfr2 activation. Raf-1, Raf-B, Mek-1, Mek kinase, and p90(rsk) kinases were also shown to be activated independently in a distinct time-dependent pattern through the two Tnf receptors. In addition, both Tnfr1 and Tnfr2 mediated independently the activation of the transcription factor Ap-1 albeit with parallel activation kinetics. In contrast, Tnfr1 exclusively mediated activation of NF-kappaB and fibroblast proliferation; however, Tnfr2 enhanced proliferation triggered through Tnfr1. These findings indicate distinct but also overlapping roles of Tnfr1 and Tnfr2 in primary mouse fibroblasts and suggest different regulation mechanisms of signal transduction pathways under the control of both Tnf receptors.[1]

References

 
WikiGenes - Universities