The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Tnfrsf1a  -  tumor necrosis factor receptor superfamily...

Mus musculus

Synonyms: CD120a, FPF, TNF receptor alpha chain, TNF-R, TNF-R-I, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tnfrsf1a

  • Following CP infection, the Tnfsf5-/- Tnfrsf1a & 1b-/- mice were spared from cholangitis, even though their intestinal and bile duct infection by CP persisted [1].
  • When used in vivo, p55- but not p75-specific mAbs protected mice from lethal endotoxin shock and blocked development of a protective response against Listeria monocytogenes infection [2].
  • Thus, therapy targeting TNF and/or its p55 receptor presents itself as a means of preventing the osteolysis of chronic bacterial infection [3].
  • To determine the role of the TNF/TNF-R system in chronic heart disease, we used a murine model of cardiac myosin-induced myocarditis that closely resembles the chronic stages of virus-induced myocarditis in humans [4].
  • Low-molecular-weight tumor necrosis factor receptor p55 controls induction of autoimmune heart disease [4].
  • Further understanding of colon epithelial cell-specific TNFR signaling may result in the identification of new targets for inflammatory bowel disease treatment and define novel mediators of colitis-associated cancer [5].
 

Psychiatry related information on Tnfrsf1a

 

High impact information on Tnfrsf1a

 

Chemical compound and disease context of Tnfrsf1a

 

Biological context of Tnfrsf1a

 

Anatomical context of Tnfrsf1a

 

Associations of Tnfrsf1a with chemical compounds

 

Physical interactions of Tnfrsf1a

 

Enzymatic interactions of Tnfrsf1a

  • Collectively, these findings suggest that pp130 and pp95 are constitutively associated with CD120a (p55) and become inducibly phosphorylated in macrophages in response to TNFalpha [31].
 

Co-localisations of Tnfrsf1a

 

Regulatory relationships of Tnfrsf1a

 

Other interactions of Tnfrsf1a

 

Analytical, diagnostic and therapeutic context of Tnfrsf1a

  • To investigate the role of TNFR1 in beneficial and detrimental activities of TNF, we generated TNFR1-deficient mice by gene targeting [23].
  • In p55-deficient mice, both the numbers of eosinophils and levels of IL-5 in bronchoalveolar lavage fluid were significantly lower than in sensitized/challenged control mice (p < 0.05) [42].
  • After the transplantation of allogeneic bone marrow and spleen cells to lethally irradiated mice, all wild-type recipients developed early lethal GVHD within 1 wk, whereas TNFRp55-deficient recipients had much reduced GVHD and survived for at least 3 wk [37].
  • Using sucrose density gradient ultracentrifugation and a sensitive ELISA to detect TNF-R1, we show that TNF-R1 is rapidly and transiently recruited to lipid rafts in response to TNF-alpha [43].
  • Immunohistochemistry demonstrated a remarkable reduction of inducible nitric oxide synthase protein in brain and lung of TNFR1/2(0/0) and TNFR1(0/0) as compared with TNFR2(0/0) and wt mice [44].

References

  1. Requirement for TNF-Tnfrsf1 signalling for sclerosing cholangitis in mice chronically infected by Cryptosporidium parvum. Ponnuraj, E.M., Hayward, A.R. Clin. Exp. Immunol. (2002) [Pubmed]
  2. Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. Sheehan, K.C., Pinckard, J.K., Arthur, C.D., Dehner, L.P., Goeddel, D.V., Schreiber, R.D. J. Exp. Med. (1995) [Pubmed]
  3. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. Abu-Amer, Y., Ross, F.P., Edwards, J., Teitelbaum, S.L. J. Clin. Invest. (1997) [Pubmed]
  4. Low-molecular-weight tumor necrosis factor receptor p55 controls induction of autoimmune heart disease. Bachmaier, K., Pummerer, C., Kozieradzki, I., Pfeffer, K., Mak, T.W., Neu, N., Penninger, J.M. Circulation (1997) [Pubmed]
  5. TNFR1 promotes tumor necrosis factor-mediated mouse colon epithelial cell survival through RAF activation of NF-kappaB. Edelblum, K.L., Goettel, J.A., Koyama, T., McElroy, S.J., Yan, F., Polk, D.B. J. Biol. Chem. (2008) [Pubmed]
  6. Myosin ii light chain phosphorylation regulates membrane localization and apoptotic signaling of tumor necrosis factor receptor-1. Jin, Y., Atkinson, S.J., Marrs, J.A., Gallagher, P.J. J. Biol. Chem. (2001) [Pubmed]
  7. Tumor necrosis factor receptor p55 controls the severity of arthritis in experimental Yersinia enterocolitica infection. Zhao, Y.X., Zhang, H., Chiu, B., Payne, U., Inman, R.D. Arthritis Rheum. (1999) [Pubmed]
  8. Additive activation of hepatic NF-kappaB by ethanol and hepatitis B protein X (HBX) or HCV core protein: involvement of TNF-alpha receptor 1-independent and -dependent mechanisms. Kim, W.H., Hong, F., Jaruga, B., Hu, Z., Fan, S., Liang, T.J., Gao, B. FASEB J. (2001) [Pubmed]
  9. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons. Del Villar, K., Miller, C.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. TNF/TNFR family members in costimulation of T cell responses. Watts, T.H. Annu. Rev. Immunol. (2005) [Pubmed]
  11. Involvement of a novel Tnf receptor homologue in hair follicle induction. Headon, D.J., Overbeek, P.A. Nat. Genet. (1999) [Pubmed]
  12. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Brojatsch, J., Naughton, J., Rolls, M.M., Zingler, K., Young, J.A. Cell (1996) [Pubmed]
  13. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Stanger, B.Z., Leder, P., Lee, T.H., Kim, E., Seed, B. Cell (1995) [Pubmed]
  14. Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. Lundberg, P., Welander, P.V., Edwards, C.K., van Rooijen, N., Cantin, E. J. Virol. (2007) [Pubmed]
  15. The locus of tumor necrosis factor-alpha action in lung inflammation. Smith, S., Skerrett, S.J., Chi, E.Y., Jonas, M., Mohler, K., Wilson, C.B. Am. J. Respir. Cell Mol. Biol. (1998) [Pubmed]
  16. Ablation of tumor necrosis factor receptor type I (p55) alters oxygen-induced lung injury. Pryhuber, G.S., O'Brien, D.P., Baggs, R., Phipps, R., Huyck, H., Sanz, I., Nahm, M.H. Am. J. Physiol. Lung Cell Mol. Physiol. (2000) [Pubmed]
  17. Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis. Guo, G., Morrissey, J., McCracken, R., Tolley, T., Liapis, H., Klahr, S. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  18. The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Simeonova, P.P., Gallucci, R.M., Hulderman, T., Wilson, R., Kommineni, C., Rao, M., Luster, M.I. Toxicol. Appl. Pharmacol. (2001) [Pubmed]
  19. Thermal injury-induced priming effect of neutrophil is TNF-alpha and P38 dependent. Chen, L.W., Huang, H.L., Lee, I.T., Hsu, C.M., Lu, P.J. Shock (2006) [Pubmed]
  20. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. Le Hir, M., Bluethmann, H., Kosco-Vilbois, M.H., Müller, M., di Padova, F., Moore, M., Ryffel, B., Eugster, H.P. J. Exp. Med. (1996) [Pubmed]
  21. Defective Peyer's patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. Neumann, B., Luz, A., Pfeffer, K., Holzmann, B. J. Exp. Med. (1996) [Pubmed]
  22. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Lobito, A.A., Kimberley, F.C., Muppidi, J.R., Komarow, H., Jackson, A.J., Hull, K.M., Kastner, D.L., Screaton, G.R., Siegel, R.M. Blood (2006) [Pubmed]
  23. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Rothe, J., Lesslauer, W., Lötscher, H., Lang, Y., Koebel, P., Köntgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., Bluethmann, H. Nature (1993) [Pubmed]
  24. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. Jensen, J.M., Schütze, S., Förl, M., Krönke, M., Proksch, E. J. Clin. Invest. (1999) [Pubmed]
  25. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Yin, M., Wheeler, M.D., Kono, H., Bradford, B.U., Gallucci, R.M., Luster, M.I., Thurman, R.G. Gastroenterology (1999) [Pubmed]
  26. Tumor necrosis factor alpha rapidly activates the mitogen-activated protein kinase (MAPK) cascade in a MAPK kinase kinase-dependent, c-Raf-1-independent fashion in mouse macrophages. Winston, B.W., Lange-Carter, C.A., Gardner, A.M., Johnson, G.L., Riches, D.W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  27. Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Su, X., Zhou, T., Yang, P., Edwards, C.K., Mountz, J.D. Arthritis Rheum. (1998) [Pubmed]
  28. Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice. Sudo, K., Yamada, Y., Moriwaki, H., Saito, K., Seishima, M. Cytokine (2005) [Pubmed]
  29. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Nguyen, L.T., Duncan, G.S., Mirtsos, C., Ng, M., Speiser, D.E., Shahinian, A., Marino, M.W., Mak, T.W., Ohashi, P.S., Yeh, W.C. Immunity (1999) [Pubmed]
  30. Role of p55 tumor necrosis factor receptor 1 in acetaminophen-induced antioxidant defense. Chiu, H., Gardner, C.R., Dambach, D.M., Brittingham, J.A., Durham, S.K., Laskin, J.D., Laskin, D.L. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
  31. Phosphorylation of 130- and 95-kDa substrates associated with tumor necrosis factor-alpha receptor CD120a (p55). Uh, S., Van Linden, A., Riches, D.W. J. Biol. Chem. (2000) [Pubmed]
  32. Delayed expressed TNFR1 co-localize with ICAM-1 in astrocyte in mice brain after transient focal ischemia. Yin, L., Ohtaki, H., Nakamachi, T., Kudo, Y., Makino, R., Shioda, S. Neurosci. Lett. (2004) [Pubmed]
  33. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. Theiss, A.L., Simmons, J.G., Jobin, C., Lund, P.K. J. Biol. Chem. (2005) [Pubmed]
  34. Activated T cells induce macrophages to produce NO and control Leishmania major in the absence of tumor necrosis factor receptor p55. Nashleanas, M., Scott, P. Infect. Immun. (2000) [Pubmed]
  35. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Mariño, E., Cardier, J.E. Cytokine (2003) [Pubmed]
  36. Control of Leishmania major infection in mice lacking TNF receptors. Nashleanas, M., Kanaly, S., Scott, P. J. Immunol. (1998) [Pubmed]
  37. TNF receptor p55 controls early acute graft-versus-host disease. Speiser, D.E., Bachmann, M.F., Frick, T.W., McKall-Faienza, K., Griffiths, E., Pfeffer, K., Mak, T.W., Ohashi, P.S. J. Immunol. (1997) [Pubmed]
  38. A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin beta. Koni, P.A., Flavell, R.A. J. Exp. Med. (1998) [Pubmed]
  39. Transmembrane tumor necrosis factor (TNF)-alpha inhibits adipocyte differentiation by selectively activating TNF receptor 1. Xu, H., Sethi, J.K., Hotamisligil, G.S. J. Biol. Chem. (1999) [Pubmed]
  40. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Deckert-Schlüter, M., Bluethmann, H., Kaefer, N., Rang, A., Schlüter, D. Am. J. Pathol. (1999) [Pubmed]
  41. Phosphorylation of the membrane proximal region of tumor necrosis factor receptor CD120a (p55) at ERK consensus sites. Van Linden, A.A., Cottin, V., Leu, C., Riches, D.W. J. Biol. Chem. (2000) [Pubmed]
  42. Requirement for the p75 TNF-alpha receptor 2 in the regulation of airway hyperresponsiveness by gamma delta T cells. Kanehiro, A., Lahn, M., Mäkelä, M.J., Dakhama, A., Joetham, A., Rha, Y.H., Born, W., Gelfand, E.W. J. Immunol. (2002) [Pubmed]
  43. Differential regulation of TNF-R1 signaling: lipid raft dependency of p42mapk/erk2 activation, but not NF-kappaB activation. Doan, J.E., Windmiller, D.A., Riches, D.W. J. Immunol. (2004) [Pubmed]
  44. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. Deckert-Schlüter, M., Bluethmann, H., Rang, A., Hof, H., Schlüter, D. J. Immunol. (1998) [Pubmed]
 
WikiGenes - Universities