The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation.

CrmA, a poxvirus gene product with a serpin-like structure, blocks a variety of apoptotic death events in cultured cells. Based on the ability of CrmA to inhibit the interleukin-1beta converting enzyme in vitro, it has been speculated that interleukin-1beta converting enzyme-related proteases (caspases) essential for apoptosis are the cellular targets of CrmA. Here we found that rabbitpox virus CrmA/SPI-2 inhibits the cleavage of lamin A mediated by a caspase in our cell-free system of apoptosis. In the presence of CrmA/SPI-2, nuclear apoptosis in vitro was blocked at an intermediate stage after collapse of the chromatin against the nuclear periphery and before nuclear shrinkage and disintegration into apoptotic body-like fragments. Using N-(acetyltyrosinylvalinyl-Nepsilon-biotinyllysyl) aspartic acid [(2,6-dimethylbenzoyl)oxy] methyl ketone, which derivatizes the active forms of caspases, we could show that one of five caspases active in the extracts is inhibited both by CrmA/SPI-2 and by a peptide spanning the lamin A apoptotic cleavage site. These results reveal that CrmA/SPI-2 can inhibit a caspase responsible both for lamin A cleavage and for the nuclear disintegration characteristic of apoptosis.[1]

References

  1. CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation. Takahashi, A., Musy, P.Y., Martins, L.M., Poirier, G.G., Moyer, R.W., Earnshaw, W.C. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities