CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation.
CrmA, a poxvirus gene product with a serpin-like structure, blocks a variety of apoptotic death events in cultured cells. Based on the ability of CrmA to inhibit the interleukin-1beta converting enzyme in vitro, it has been speculated that interleukin-1beta converting enzyme-related proteases (caspases) essential for apoptosis are the cellular targets of CrmA. Here we found that rabbitpox virus CrmA/SPI-2 inhibits the cleavage of lamin A mediated by a caspase in our cell-free system of apoptosis. In the presence of CrmA/SPI-2, nuclear apoptosis in vitro was blocked at an intermediate stage after collapse of the chromatin against the nuclear periphery and before nuclear shrinkage and disintegration into apoptotic body-like fragments. Using N-(acetyltyrosinylvalinyl-Nepsilon-biotinyllysyl) aspartic acid [(2,6-dimethylbenzoyl)oxy] methyl ketone, which derivatizes the active forms of caspases, we could show that one of five caspases active in the extracts is inhibited both by CrmA/SPI-2 and by a peptide spanning the lamin A apoptotic cleavage site. These results reveal that CrmA/SPI-2 can inhibit a caspase responsible both for lamin A cleavage and for the nuclear disintegration characteristic of apoptosis.[1]References
- CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation. Takahashi, A., Musy, P.Y., Martins, L.M., Poirier, G.G., Moyer, R.W., Earnshaw, W.C. J. Biol. Chem. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









