The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus- mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice.

APOBEC-1 is a catalytic subunit of an apolipoprotein B (apoB) mRNA editing enzyme complex. In humans it is expressed only in the intestine, whereas in mice it is expressed in both the liver and intestine. APOBEC-1 exists as a spontaneous homodimer (Lau, P. P., Zhu, H.-J., Baldini, A., Charnsangavej, C., and Chan, L. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8522-8526). We tested the editing activity and dimerization potential of three different mouse APOBEC-1 mutants using in vitro editing activity assay and immunoprecipitation in the presence of epitope-tagged APOBEC-1. One catalytically inactive mutant, mu1 (H61K/C93S/C96S), that retains its capacity to dimerize with wild-type APOBEC-1 was found to inhibit the editing activity of the latter and was thus a dominant negative mutant. Two other inactive mutants that dimerized poorly with APOBEC-1 failed to inhibit its activity. Intravenous injection of a mu1 adenovirus, Admu1, in C57BL/6J mice in vivo resulted in liver-specific expression of mu1 mRNA. On days 4 and 9 after virus injection, endogenous hepatic apoB mRNA editing was 23.3 +/- 5.0 and 36.8 +/- 5.7%, respectively, compared with 65.3 +/- 11 and 71.3 +/- 5.2%, respectively, for luciferase adenovirus-treated animals. Plasma apoB-100 accounted for 95 and 93% of total plasma apoB in Admu1 animals on days 4 and 9, respectively, compared with 78 and 72% in luciferase adenovirus animals. Plasma cholesterol on day 9 was 98 +/- 17 mg/dl in the mu1-treated animals, substantially higher than phosphate-buffered saline-treated (57 +/- 9 mg/dl) or luciferase-treated (71 +/- 12 mg/dl) controls. Fast protein liquid chromatography analysis of mouse plasma showed that the intermediate density/low density lipoprotein fractions in the animals treated with the dominant negative mutant adenovirus were much higher than those in controls. We conclude that active APOBEC-1 functions as a dimer and its activity is inhibited by a dominant negative mutant. Furthermore, apoB mRNA editing determines the availability of apoB-100, which in turn limits the amount of intermediate density/low density lipoprotein that can be formed in mice. Liver-specific inhibition of apoB mRNA editing is an important component of any strategy to enhance the value of mice as a model for human lipoprotein metabolism.[1]

References

 
WikiGenes - Universities